首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 157 毫秒
1.
童慧峰  唐志平  张凌 《计算物理》2007,24(6):667-672
采用单流体模型描述由强激光产生的烧蚀等离子体,并用具有五阶精度的广义Godunov差分格式——加权本质无振荡格式对该模型进行离散化,考虑激光与等离子体相互作用和能量耦合,数值模拟强激光与固体靶相互作用时产生的烧蚀等离子体随时间演化的物理过程,给出数值模拟结果,并对其进行分析和讨论.数值模拟结果表明,激光能量在靶面等离子体中被强烈吸收,激光支持LSD(Laser Supported Detonation)波速度约为理想LSD波速度的一半.  相似文献   

2.
将高功率脉冲激光作用于金属元靶,探测激光诱导等离子体在靶上产生的电学信号.研究了作用激光能量的差异对等离子体电信号的影响,实验结果表明随着激光能量的增加电信号脉冲幅度逐渐增大并趋于饱和.同时,将激光烧蚀过程中的靶材等效为瞬态电流源,初步建立了激光诱导等离子体等效电路模型,并将该模型应用于激光烧蚀金属靶,对靶上电信号的产生机制进行了详细讨论.  相似文献   

3.
 通过分析不同情况下激光与固态靶、气化物质的作用机理,利用激光体烧蚀模型,采用流体力学理论和1维Lagrange有限差分的计算方法,对真空条件下不同激光参数下气化物质对靶产生冲量的过程进行了数值模拟,模拟计算结果与实验测量结果、Phipps定标关系符合较好。计算结果表明,在等离子体的情况下冲量耦合系数随着激光强度增大而减小。  相似文献   

4.
脉冲激光烧蚀块状靶材的双动态界面研究   总被引:11,自引:0,他引:11       下载免费PDF全文
给出脉冲激光作用块状靶材的烧蚀模型.根据能量平衡原理,导出烧蚀面的位置随时间的变化关系.利用绝热近似、温度连续性条件和能量平衡原理来获得烧蚀面与固液相界面边界条件.结合热传导方程,利用精确解与积分近似法相结合的方案,给出固液两相的温度分布与时间和位置的变化关系,以及固液相界面的位置随时间的变化规律,并与已有的理论和实验结果进行比较.最后以铝靶为例计算模拟了激光烧蚀的全过程计算. 关键词: 脉冲激光 等离子体 固液相界面 烧蚀面  相似文献   

5.
激光与固体靶面烧蚀等离子体的能量耦合计算   总被引:1,自引:0,他引:1  
 强激光辐照下固体靶表面迅速汽化产生靶蒸气等离子体,激光穿过等离子体区到达固体靶表面的过程就是激光束与等离子体的能量耦合与交换过程。采用具有五阶精度的WENO差分格式和简易等离子体状态方程模型对激光与等离子体相互作用的复杂物理过程进行了数值计算,分析了激光束能量在等离子体区中的吸收、屏蔽效应等动态耦合规律以及激光支持等离子体前驱冲击波传播。数值模拟结果表明:激光能量是支持靶面等离子体运动的唯一原因,能量屏蔽效应对激光与等离子体能量耦合有很大影响,通过控制激光脉冲宽度,可以合理调节屏蔽效应的影响。  相似文献   

6.
激光烧蚀冲量耦合系数解析计算模型   总被引:2,自引:1,他引:1       下载免费PDF全文
利用激光清除空间碎片被认为是一种可行手段,冲量耦合系数是数值计算空间碎片清除效果的重要参数。建立了激光烧蚀冲量耦合系数解析计算模型,引入电离度参数,将气化机制与等离子体机制两种机制下的冲量耦合系数解析计算模型联系起来,建立统一的耦合系数解析模型。以空间碎片常见材料Al为例,计算得到冲量耦合系数、电离度、激光功率密度三者之间的变化关系。随着激光功率密度的增加,气化机制逐渐向等离子体机制过渡,电离度增加,直至完全电离,冲量耦合系数先增加后减少,并且在等离子机制占主导情况下达到最优冲量耦合。  相似文献   

7.
为研究短脉冲激光辐照硅膜表面后的能量传输过程,基于双温方程的计算方法以及自由电子气理论,建立了求解能量传输方程的二维有限元模型.针对红外以及可见光波段的激光,通过限制硅膜的大小,有效地控制了计算的精度,并得到电子温度与热流的时间以及空间分布.计算结果表明,激光诱导产生的等离子体密度极大地影响了硅膜表面的反射率及光吸收系数;通过分析电子热流密度随时间的变化曲线,得到硅膜内部能量的传输过程;在激光作用过程中,硅膜内部晶格温度始终保持在熔点以下,证明了等离子体密度是激光烧蚀硅膜的主导因素;预测了激光烧蚀的图形,并分析了不同波长的激光烧蚀图形与高斯曲线的关系.  相似文献   

8.
研究了百兆瓦级激光烧蚀碳/碳复合材料靶材产生的等离子体吸收激光束能量引起的热阻塞效应。首先,基于逆轫致吸收理论,建立了激光在烧蚀靶材产生的等离子体中的传播模型;然后,基于磁流体理论,得到了等离子体在百兆瓦级激光形成的电磁场中的波动方程,建立了等离子体吸收激光能量引起热阻塞效应的模型。最后,对烧蚀过程中粒子的总密度、吸收系数、靶材表面等效热流随激光持续时间的变化规律以及是否考虑热阻塞效应时,靶面垂直方向的温度场进行了数值模拟。结果表明:等离子体的形成,对激光形成了明显的热阻塞效应,削弱了激光对靶材的烧蚀作用,使粒子总密度、吸收系数、靶材表面等效热流以及靶面垂直方向温度场的变化均呈现为非线性。  相似文献   

9.
张黎  张永强  贺佳  谭福利  赵剑衡 《强激光与粒子束》2018,30(5):051001-1-051001-5
采用二维雷诺平均N-S方程,数值模拟研究了大气条件下短脉冲激光与固体靶相互作用所产生等离子体的动力学过程。采用k-ε两方程模型用于湍流的数值模拟,分别利用ROE格式和二阶中心格式对对流通量和粘性通量进行离散处理;用高斯-赛德尔隐式格式对方程进行时间推进求解。数值模拟给出了激光引发靶蒸气等离子体侧向膨胀、稀疏等二维流体动力学过程的物理图像,讨论了靶与光斑尺寸对脉冲激光冲量的影响。结果表明,不同宽度固体靶受到的激光冲量有很大差异,固体靶宽度越大,受到的激光冲量也越大。  相似文献   

10.
靶结构对烧蚀模式激光推进效应影响的数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
 强激光辐照于固体平面靶产生高温、高压等离子体喷射,进而对固体靶产生力学推进效应,这是烧蚀模式激光推进的基本原理。采用针对高温气体(等离子体)电离度的一种近似计算方法,以及具有五阶精度的广义Godunov差分格式-加权本质无振荡格式WENO(Weighted Essentially Non-Oscillatory Schemes),对强激光烧蚀固体靶产生等离子体喷射推进效应进行数值模拟。计算了固体靶面横向尺寸与激光光斑大小对推进效应影响的耦合关系,以及不同靶面结构烧蚀压力随时间的变化及其推进效应参数变化。数值模拟结果表明,靶面横向尺寸与光斑大小具有最优耦合值;固体靶面增加约束喷管结构对激光推进效应明显增大,并且随着约束喷管位置的不同,对激光推进效应增大的影响也有较大差异。  相似文献   

11.
 利用脉冲Nd:YAG激光作用在铝、铜靶上,研究了不同入射激光能量下冲量耦合系数和离焦量之间的关系,以及不同功率密度情况下冲量耦合系数和光斑直径的关系。实验表明铝靶在入射激光脉冲能量由75.8 mJ增加到382.3 mJ时,冲量耦合系数峰值对应的最佳离焦量由-10 mm处远离焦点向透镜方向移到-18 mm,而对应的激光功率密度仅由2.0×109 W/cm2增加到3.9×109 W/cm2;铜靶实验规律和铝靶类似。等离子体屏蔽的吸收作用导致了冲量耦合系数达到最大值后迅速降低。铝靶在入射激光功率密度由0.7×109 W/cm2增大到1.0×1010W/cm2时,冲量耦合系数随光斑直径增大而增大,对应变化斜率由5.2×10-5N·s/(mm·J)增大到49.2×10-5N·s/(mm·J),表明了稀疏波对冲量耦合系数的削弱作用随入射激光功率密度增加而增加,随光斑直径增大而减小。  相似文献   

12.
高勋  宋晓伟  林景全 《中国物理 B》2011,20(2):24210-024210
Thermal characteristics of tightly-contacted copper--gold double-layer thin film target under ablation of femtosecond laser pulses are investigated by using a two-temperature theoretical model. Numerical simulation shows that electron heat flux varies significantly on the boundary of copper--gold film with different maximal electron temperature of 1.15×103 K at 5 ps after ablating laser pulse in gold and copper films, which can reach a balance around 12.6 ps and 8.2 ps for a single and double pulse ablation, respectively, and in the meantime, the lattice temperature difference crossing the gold--copper interface is only about 0.04×103 K at the same time scale. It is also found that electron--lattice heat relaxation time increases linearly with laser fluence in both single and double pulse ablation, and a sudden change of the relaxation time appears after the laser energy density exceeds the ablation threshold.  相似文献   

13.
Ultrashort pulse laser ablation of metallic targets is investigated theoretically through establishing a modified two-temperature model that takes into account both the temperature dependent electron–lattice coupling and the electron–electron-collision dominated electron diffusion processes for higher electron temperature regime. The electron–lattice energy coupling rate is found to reduce only slowly with increasing pulse duration, but grow rapidly with laser fluence, implying that the melting time of metallic materials decreases as the laser intensity increases. By taking phase explosion as the primary ablation mechanism, the predicted dependences of ablation rates on laser energy fluences for different laser pulse widths match very well with the experimental data. It is also found that during phase explosion the ablation rate is almost independent of the pulse width, whereas the ablation threshold fluence increases with the pulse duration even for femtosecond pulses. These theoretical results should be useful in having proper understanding of the ablation physics of ultrafast micromachining of metal targets. PACS 52.50.Jm; 61.80.Az; 72.15.Cz; 79.20.Ap; 79.20.Ds  相似文献   

14.
A thermal model to describe the high-power nanosecond pulsed laser ablation is presented. It involves the vaporization and the following plasma shielding effect on the whole ablation process. As an example of Si target, we obtainthe time evolution of the calculated surface temperature, ablation rate and ablation depth. It can be seen that plasma shielding plays a more important role in the ablation process with time. At the same time, the ablation depth with laser fluence based on different models is shown. Moreover, we simulate the pulsed laser irradiation Ni target. The evolution of the transmitted intensity and the variation of ablation depth per pulse with laser fluence are performed. Under the same experimental conditions, the numerical results calculated with our thermal model are more in agreement with the experimental data.  相似文献   

15.
We investigated the ion laser-produced plasma plume generated during ultrafast laser ablation of copper and silicon targets in high vacuum. The ablation plasma was induced by ≈50 fs, 800 nm Ti:Sa laser pulses irradiating the target surface at an angle of 45°. An ion probe was used to investigate the time-of-flight profiles of the emitted ions in a laser fluence range from the ablation threshold up to ≈10 J/cm2. The angular distribution of the ion flux and average velocity of the produced ions were studied by moving the ion probe on a circle around the ablation spot. The angular distribution of the ion flux is well described by an adiabatic and isentropic model of expansion of a plume produced by laser ablation of solid targets. The angular distribution of the ion flux narrows as the laser pulse fluence increases. Moreover, the ion average velocity reaches values of several tens of km/s, evidencing the presence of ions with kinetic energy of several hundred eV. Finally, the ion flux energy is confined in a narrow angular region around the target normal.  相似文献   

16.
杭玉桦  邱岩  周颖  刘韬  朱斌  廖开星  时铭鑫  薛飞 《中国物理 B》2022,31(2):24212-024212
Laser-induced plasmas of dual-pulse fiber-optic laser-induced breakdown spectroscopy with different pulse energy ratios are studied by using the optical emission spectroscopy(OES)and fast imaging.The energy of the two laser pulses is independently adjusted within 0–30 m J with the total energy fixed at 30 m J.The inter-pulse delay remains 450 ns constantly.As the energy share of the first pulse increases,a similar bimodal variation trend of line intensities is observed.The two peaks are obtained at the point where the first pulse is half or twice of the second one,and the maximum spectral enhancement is at the first peak.The bimodal variation trend is induced by the change in the dominated mechanism of dual-pulse excitation with the trough between the two peaks caused by the weak coupling between the two mechanisms.By increasing the first pulse energy,there is a transition from the ablation enhancement dominance near the first peak to the plasma reheating dominance near the second peak.The calculations of plasma temperature and electron number density are consistent with the bimodal trend,which have the values of 17024.47 K,2.75×1017cm;and 12215.93 K,1.17×1017cm;at a time delay of 550 ns.In addition,the difference between the two peaks decreases with time delay.With the increase in the first pulse energy share,the plasma morphology undergoes a transformation from hemispherical to shiny-dot and to oblate-cylinder structure during the second laser irradiation from the recorded images by using an intensified charge-coupled device(ICCD)camera.Correspondingly,the peak expansion distance of the plasma front first decreases significantly from 1.99 mm in the single-pulse case to 1.34 mm at 12/18(dominated by ablation enhancement)and then increases slightly with increasing the plasma reheating effect.The variations in plasma dynamics verify that the change of pulse energy ratios leads to a transformation in the dual-pulse excitation mechanism.  相似文献   

17.
A plasma is produced in air by using a high-intensity Q-switch Nd:YAG pulsed laser to irradiate a solid target, and the impulses delivering from the plasma to the target are measured at different laser power densities. Analysing the formation process of laser plasma and the laser supported detonation wave (LSDW) and using fluid mechanics theory and Pirri's methods, an approximately theoretical solution of the impulse delivering from the plasma to the target under our experimental condition is found. Furthermore, according to the formation time of plasma and the variation of pressure in plasma in a non-equilibrium state, a physical model of the interaction between the pulse laser and the solid target is developed. The plasma evolutions with time during and after the laser pulse irradiating the target are simulated numerically by using a three-dimensional difference scheme. And the numerical solutions of the impulse delivering from the plasma to the target are obtained. A comparison among the theoretical, numerical and experimental results and their analyses are performed. The experimental results are explained reasonably. The consistency between numerical results and experimental results implies that the numerical calculation model used in this paper can well describe the mechanical action of the laser on the target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号