首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wenjing Cheng 《中国物理 B》2022,31(6):63201-063201
Enhancing the upconversion luminescence of rare earth ions is crucial for their applications in the laser sources, fiber optic communications, color displays, biolabeling, and biomedical sensors. In this paper, we theoretically study the resonance-mediated (1+2)-three-photon absorption in Pr3+ ions by a rectangle phase modulation. The results show that the resonance-mediated (1+2)-three-photon absorption can be effectively enhanced by properly designing the depth and width of the rectangle phase modulation, which can be attributed to the constructive interference between on-resonant and near-resonant three-photon excitation pathways. Further, the enhancement efficiency of resonance-mediated (1+2)-three-photon absorption can be affected by the pulse width (or spectral bandwidth) of femtosecond laser field, final state transition frequency, and absorption bandwidths. This research can provide a clear physical picture for understanding and controlling the multi-photon absorption in rare-earth ions, and also can provide theoretical guidance for improving the up-conversion luminescence.  相似文献   

2.
张晖  姚云华  张诗按  卢晨晖  孙真荣 《中国物理 B》2016,25(2):23201-023201
We propose a femtosecond laser polarization modulation scheme to control the up-conversion(UC) luminescence in Er~(3+)-doped NaYF_4 nanocrystals dispersed in the silicate glass. We show that the UC luminescence can be suppressed when the laser polarization is changed from linear through elliptical to circular, and the higher repetition rate will yield the lower control efficiency. We theoretically analyze the physical control mechanism of the UC luminescence polarization modulation by considering on- and near-resonant two-photon absorption, energy transfer up-conversion, and excited state absorption, and show that the polarization control mainly comes from the contribution of near-resonant two-photon absorption. Furthermore, we propose a method to improve the polarization control efficiency of UC luminescence in rare-earth ions by applying a two-color femtosecond laser field.  相似文献   

3.
The femtosecond pulse shaping technique has been shown to be an effective method to control the multi-photon absorption by the light-matter interaction. Previous studies mainly focused on the quantum coherent control of the multi-photon absorption by the phase, amplitude and polarization modulation, but the coherent features of the multi-photon absorption depending on the energy level structure, the laser spectrum bandwidth and laser central frequency still lack in-depth systematic research. In this work, we further explore the coherent features of the resonance-mediated two-photon absorption in a rubidium atom by varying the energy level structure, spectrum bandwidth and central frequency of the femtosecond laser field. The theoretical results show that the change of the intermediate state detuning can effectively influence the enhancement of the near-resonant part, which further affects the transform-limited(TL)-normalized final state population maximun. Moreover, as the laser spectrum bandwidth increases, the TL-normalized final state population maximum can be effectively enhanced due to the increase of the enhancement in the near-resonant part, but the TL-normalized final state population maximum is constant by varying the laser central frequency. These studies can provide a clear physical picture for understanding the coherent features of the resonance-mediated two-photon absorption, and can also provide a theoretical guidance for the future applications.  相似文献   

4.
The up-conversion luminescence tuning of rare-earth ions is an important research topic for understanding luminescence mechanisms and promoting related applications. In this paper, we experimentally study the up-conversion luminescence tuning of Er~(3+)-doped ceramic glass excited by the unshaped, V-shaped and cosine-shaped femtosecond laser field with different laser powers. The results show that green and red up-conversion luminescence can be effectively tuned by varying the power or spectral phase of the femtosecond laser field. We further analyze the up-conversion luminescence tuning mechanism by considering different excitation processes, including single-photon absorption(SPA), two-photon absorption(TPA), excited state absorption(ESA), and energy transfer up-conversion(ETU). The relative weight of TPA in the whole excitation process can increase with the increase of the laser power, thereby enhancing the intensity ratio between green and red luminescence(I_(547)/I_(656)). However, the second ETU(ETU2) process can generate red luminescence and reduce the green and red luminescence intensity ratio I_(547)/I_(656), while the third ESA(ESA3) process can produce green luminescence and enhance its control efficiency. Moreover, the up-conversion luminescence tuning mechanism is further validated by observing the up-conversion luminescence intensity, depending on the laser power and the down-conversion luminescence spectrum under the excitation of 400-nm femtosecond laser pulse. These studies can present a clear physical picture that enables us to understand the up-conversion luminescence tuning mechanism in rare-earth ions, and can also provide an opportunity to tune up-conversion luminescence to promote its related applications.  相似文献   

5.
The spectral phase of the femtosecond laser field is an important parameter that affects the up-conversion(UC)luminescence efficiency of dopant lanthanide ions.In this work,we report an experi-mental study on controlling the UC lmiiinescence efficiency in Sm^3+:NaYF4 glass by 800-nm femtosec-ond laser pulse shaping using spectral phase modulation.The optimal phase control strategy efficiently enhances or suppresses the UC luminescence intensity.Based on the laser-power dependence of the UC luminescence intensity and its comparison with the luminescence spectrum under direct 266-nm fem-tosecond lciser irradiation,we propose herein an excitation model combining non-resonant two-photon absorption with resonance-media ted three-photon absorption to explain the experimental observations.  相似文献   

6.
We extend the third perturbation theory to study the polarization control behavior of the intermediate state absorption in Nd~(3+)ions. The results show that coherent interference can occur between the single-photon and three-photon excitation pathways, and depends on the central frequency of the femtosecond laser field. Moreover,single-photon and three-photon absorptions have different polarization control efficiencies, and the relative weight of three-photon absorption in the whole excitation processes can increase with increasing the laser intensity.Therefore, the enhancement or suppression of the intermediate state absorption can be realized and manipulated by properly designing the intensity and central frequency of the polarization modulated femtosecond laser field.This research can not only enrich theoretical research methods for the up-conversion luminescence manipulation of rare-earth ions, but also can provide a clear physical picture for understanding and controlling multi-photon absorption in a multiple energy level system.  相似文献   

7.
稀土掺杂材料的上转换发光   总被引:2,自引:0,他引:2  
稀土掺杂材料的上转换发光是实现光波频率转换的重要途径,也是稀土掺杂发光材料研究的重要内容。本文从介绍与上转换相关的基本概念出发,阐述了稀土离子上转换发光的发展历史;对稀土离子掺杂材料的能量传递、激发态吸收、合作敏化、合作发光、双光子吸收激发及光子吸收雪崩等上转换发光机制进行了概述,并对各机制进行了比较;对不同稀土离子掺杂体系中上转换发光的机制进行了总结;对以往研究的稀土掺杂上转换发光材料的基质,包括粉体材料、晶体材料、非晶材料进行了概括;最后对影响稀土离子上转换发光效率的因素进行了分析,提出了在上转换发光材料的设计中应重点考虑基质对泵浦光及上转换发射光的吸收、基质材料的声子能量、稀土离子的掺杂方案及泵浦途径等因素。  相似文献   

8.
利用400 nm和800 nm不同波长的低强度飞秒激光,对CdTe和CdTe/CdS核壳量子点溶胶进行激发,研究其稳态和时间分辨荧光性质.800 nm飞秒激光激发下,CdTe和CdTe/CdS核壳量子点产生上转换发光现象,上转换荧光峰与400 nm激发下的荧光峰相比蓝移最多达15 nm,而且蓝移值与荧光量子产率有关.变功率激发确认激发光功率与上转换荧光强度间满足二次方关系,时间分辨荧光的研究表明荧光动力学曲线服从双e指数衰减.提出表面态辅助的双光子吸收模型是低激发强度上转换发光的主要机理.CdTe和CdT 关键词: CdTe量子点 CdTe/CdS核壳量子点 时间分辨荧光 上转换荧光  相似文献   

9.
Up-conversion luminescence phenomenon of crystalline and noncrystalline ErP5O14 induced by about 650 nm laser are researched and analysed carefully. Not only two-photon but also three-photon up-conversion luminescence are found. The up-conversion mechanism of crystalline ErP5O14 is mainly the nonresonant up-conversion energy transfer, which is mainly achieved directly through a kind of coupling state of quasi-clusters of rare-earth ions and do not exchange the phonon energy with the crystal-lattice base to offset the energy mismatch. The mechanism, to our best knowledge, has not been reported yet.  相似文献   

10.
We have employed two-photon excitation to study the higher energy levels of Gd3+ ions in CaAl12O19 and we compare the results with those obtained using conventional UV excitation techniques. Under two-photon excitation, the luminescence intensity exhibits an unusual temporal behavior, a very long build-up followed by a decrease by orders of magnitude, ascribed to a recombination-assisted luminescence excitation mechanism assuming photo-ionization of Gd3+ ions and trapping of free electrons on deep traps.

We also find that the two-photon excitation spectra contain an additional broadening contribution which can be attributed to homogeneous broadening of excitation levels caused by excited state absorption into the conduction band. We believe that this may be a general phenomenon whenever participating photons produce ionization of impurity ions from metastable excited states. The phenomenon can manifest itself also in two-photon ionization spectral hole burning and in up-conversion processes (in the latter case, the homogeneous broadening can be caused by an intra-ion excited-state absorption).  相似文献   


11.
李慧  杨魁胜  祁宁  左周 《中国光学》2011,4(6):672-677
采用高温熔融法制备了Yb3+/Er3+掺杂的氟氧化物发光微晶玻璃,确定了最佳熔化温度(1 100℃)和退火温度(440℃,480℃)。测定得到基质玻璃的透过率为85%,掺入稀土后,透过率有所下降,并出现了稀土离子的特征吸收峰。980 nm半导体激光器(LD)激发下样品的上转换发射光谱存在4个明显的发射峰,分别为410,532,546和656 nm,对应于2H9/2→4I15/2,2H11/2→4I15/2,4S3/2→4I15/2和4F9/2→4I15/2跃迁。研究了不同Yb3+/Er3+(摩尔分数)和Er3+浓度对上转换发光强度的影响,当Yb3+∶Er3+=4∶1、Er3+摩尔分数为1.5%时,上转换发光强度达到最高。根据发光强度与泵浦功率之间的关系,确定了上转换发射均为双光子过程。讨论了Yb3+,Er3+离子间的能量传递,建立了上转换发光机制。  相似文献   

12.
在 98 0nm半导体激光激发下 ,在Er3 Yb3 Tm3 共掺玻璃样品中得到了如下的 5条较强的上转换荧光带 ,分别是近红外 (80 0nm) ,红 (6 4 5nm) ,绿 (5 4 5和 5 2 5nm) ,蓝 (4 80nm)及紫 (4 0 7nm)。与Er3 Yb3 共掺样品相比 ,Tm3 的加入使得 4 80nm的蓝光显著增强 ,这应与Tm3 特殊的能级结构有关 ;荧光强度随激发功率变化的双对数曲线表明 4 80nm蓝光发射是双光子激发过程 ,为两个Yb3 的合作上转换敏化发光 ,随着激发功率的增加 ,4 80nm荧光的logI logP曲线的斜率将变小 ,逐渐向下“弯曲”。作者详细的分析了各条荧光带的上转换机制 ;并用速率方程讨论了稳态情况下 4 80nm蓝色上转换荧光强度随激发功率变化的关系 ,其结果与实验一致。  相似文献   

13.
New efficient mechanisms of long-wavelength excitation of short-wavelength luminescence in a system of rare-earth impurity ions are proposed. The model studied involves a multilevel system of electronic states of a rare-earth ion interacting with the long-wavelength emission that is in resonance with one or several transitions between the excited levels. The concentration of impurity ions is assumed to be sufficiently high, so that the interionic cross-relaxation and the up-conversion play a significant role. Moreover, the model includes processes similar to photon avalanche, in which the photoinduced excitation of a single ion is converted into lower-level excitations of several ions, each of them reentering the process after photon absorption. Numerical solutions of the system of balance equations for a multilevel system are obtained with calculated and semiempirical parameters of self-quenching and up-conversion. It is shown that, in a system of Tm3+ impurity ions, short-wavelength luminescence at λ≥0.29 μm can be efficiently excited by radiation at λ?1.11 or 0.649 μm with a moderate intensity.  相似文献   

14.
程丽红  曹望和  夏天 《发光学报》2004,25(4):355-358
制备了一种新型的上转换发光材料,它不仅具有较高的上转换发光效率,而且还避免了氟化物基质的缺点。其组分为58.52%PbF2-34.43% GeO2-3% Al2O3-0.05% Er2O3-4%Yb2O3,其中GeO2为玻璃形成体氧化物,PbF2和Al2O3为调整剂,以共掺杂Er3+和Yb3+离子为上转换研究的对象。测量了该玻璃系统在980nm半导体激光器激发下的上转换发光光谱,观察到很强的658nm的红光和548,526nm的绿光,而且红光的发射强度远远强于绿光。通过对上转换发光强度与激发强度关系曲线的拟合,表明此材料的绿光发射和红光发射都为双光子过程。研究了激发光的工作电流与上转换荧光强度的关系,讨论了其上转换发光特性。  相似文献   

15.
The up-conversion luminescence phenomenon was observed in ErP_5O_(14) noncrys-tal glass induced by pulsed DCM dye laser.Based on the difference between up-conversion ex-citation spectrum and absorption of ~4F_(9/2) and dependence of up-conversion fluorescence inten-sity on the exciting wavelength,it is found that the mechanism of up-conversion from ~4F_(9/2)level of ErP_5O_(14) noncrystal glass can not be ascribed to energy transfering between Er~(3 ) ions,a seguential absorption of two photons by a single ion should be responsible for these process.  相似文献   

16.
Er^3+/Yb^3+共掺杂ZnO粉末的上转换发光特性   总被引:1,自引:0,他引:1  
采用高温氧化法制备了Er3 /Yb3 共掺杂ZnO粉。通过X射线衍射和扫描电镜对其进行了成分和组织结构分析,发现样品主要由ZnO和YbF3组成。在ZnO中测量到少量Er3 和Yb3 ,而YbF3中无Er3 ,故发光主要是由ZnO产生的。在980nm半导体激光器的激发下,观察到由处于激发态能级4F9/2,4S3/2,2H11/2和2H9/2的Er3 离子向基态4I15/2跃迁时发出的波长依次为658,538,522和409nm的上转换发光。在488nmAr 激光器的激发下,观察到了较强的409nm的紫光,466和450nm的弱蓝光以及379nm的紫外光,分别对应于Er3 离子的2H9/2→4I15/2,2P3/2→4I11/2,4F3/2/4F5/2→4I15/2,4G11/2→4I15/2等跃迁。上转换发光强度随激发功率的变化关系表明,488nm激发下紫色上转换荧光为双光子过程,主要是通过Er3 /Yb3 离子间正向和反向的能量传递来实现的。  相似文献   

17.
程文静  刘沛  梁果  吴萍  贾天卿  孙真荣  张诗按 《中国物理 B》2017,26(8):83201-083201
It has been shown that the femtosecond laser polarization modulation is a very simple and well-established method to control the multi-photon absorption process by the light–matter interaction. Previous studies mainly focused on the multiphoton absorption control in the weak field. In this paper, we further explore the polarization control behavior of multiphoton absorption process in the intermediate femtosecond laser field. In the weak femtosecond laser field, the secondorder perturbation theory can well describe the non-resonant two-photon absorption process. However, the higher order nonlinear effect(e.g., four-photon absorption) can occur in the intermediate femtosecond laser field, and thus it is necessary to establish new theoretical model to describe the multi-photon absorption process, which includes the two-photon and four-photon transitions. Here, we construct a fourth-order perturbation theory to study the polarization control behavior of this multi-photon absorption under the intermediate femtosecond laser field excitation, and our theoretical results show that the two-photon and four-photon excitation pathways can induce a coherent interference, while the coherent interference is constructive or destructive that depends on the femtosecond laser center frequency. Moreover, the two-photon and fourphoton transitions have the different polarization control efficiency, and the four-photon absorption can obtain the higher polarization control efficiency. Thus, the polarization control efficiency of the whole excitation process can be increased or decreased by properly designing the femtosecond laser field intensity and laser center frequency. These studies can provide a clear physical picture for understanding and controlling the multi-photon absorption process in the intermediate femtosecond laser field, and also can provide a theoretical guidance for the future experimental realization.  相似文献   

18.
本文首次报导使用脉冲DCM染料激光激发,在室温下观察到的HoP5O14非晶的上转换荧光现象,发现蓝移的发射可归结为激发离子对之间的相互作用,本文还对其上转换通道进行了分析。  相似文献   

19.
刘政威  阳效良  肖思国 《物理学报》2001,50(9):1795-1779
通过以TeO2,GeO2,ZnF2,SiO2,PbF2等为主体的氟氧化物玻璃陶瓷基质材料的研究提出了提高上转换效率的某些条件.选择低声子能量的基质,且基质的M系数接近稀土离子的M系数的氟氧化物基质材料是高效上转材料的基础,选择激发光光子能量与稀土离子、敏化稀土离子能级匹配是高效上转换材料的必要条件.为设计研究稀土掺杂能量上转换材料提供了有理论和应用价值的结果. 关键词: 能量上转换 氟氧化物玻璃陶瓷 稀土掺杂  相似文献   

20.
We present and implement a new scheme for extended multichannel selective femtosecond coherent control based on symmetry properties of the excitation channels. Here, an atomic nonresonant two-photon absorption channel is coherently incorporated in a resonance-mediated (2+1) three-photon absorption channel. By proper pulse shaping, utilizing the invariance of the two-photon absorption to specific phase transformations of the pulse, the three-photon absorption is tuned independently over an order-of-magnitude yield range for any possible two-photon absorption yield. Noticeable is a set of "two-photon dark pulses" inducing widely tunable three-photon absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号