首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
尹钊  侯向阳  郭军辉  刘源  郝平 《声学学报》2017,42(3):281-289
为研究超高速撞击声发射信号经过载人航天器加筋结构后的传播规律,分别在平板结构和加筋结构上模拟高速撞击实验,利用传感器阵列采集高速撞击产生的声发射信号。结合小波和傅里叶分析方法从板波模态、频域以及时域三方面分析加筋结构对声发射信号传播特性的影响,并研究成坑和穿孔损伤模式下声发射信号的传播规律。结果表明:加筋板中的信号高频部分比平板中高频部分能量少,筋体对信号高频部分有滤波效果。加筋结构受高速撞击产生穿孔损伤时,S0模态声波的能量增多。研究成果可为载人航天器结构的高速撞击感知与定位技术提供有利参考。   相似文献   

2.
Plates stiffened with ribs can be modeled as equivalent homogeneous isotropic or orthotropic plates. Modeling such an equivalent smeared plate numerically, say, with the finite element method requires far less computer resources than modeling the complete stiffened plate. This may be important when a number of stiffened plates are combined in a complicated assembly composed of many plate panels. However, whereas the equivalent smeared plate technique is well established and recently improved for flat panels, there is no similar established technique for doubly curved stiffened shells. In this paper the improved smeared plate technique is combined with the equation of motion for a doubly curved thin rectangular shell, and a solution is offered for using the smearing technique for stiffened shell structures. The developed prediction technique is validated by comparing natural frequencies and mode shapes as well as forced responses from simulations based on the smeared theory with results from experiments with a doubly curved cross-stiffened shell. Moreover, natural frequencies of cross-stiffened panels determined by finite element simulations that include the exact cross-sectional geometries of panels with cross-stiffeners are compared with predictions based on the smeared theory for a range of different panel curvatures. Good agreement is found.  相似文献   

3.
为了研究正交加筋板的声辐射问题,基于波数域直接求解法,建立了研究正交加筋板声辐射特性的理论模型。先利用傅里叶变换法求解周期结构的声振理论模型,得到波数域中关于结构响应的无限大耦合代数方程组,采用数值方法将其截断成有限项求解,结合稳相法便可快速获得远场辐射声压。该方法对单向和正交加筋板的预测结果与现有文献中的理论结果取得了良好的吻合,验证了理论模型的准确性和可靠性;并进一步通过数值算例研究了作用点位置,加强筋间距及平板厚度对结构声辐射特性的影响。   相似文献   

4.
This paper compares various decentralised control strategies, including structural and acoustic actuator–sensor configuration designs, to reduce noise transmission through a double panel structure. The comparison is based on identical control stability indexes. The double panel structure consists of two panels with air in between and offers the advantages of low sound transmission at high frequencies, low heat transmission, and low weight. The double panel structure is widely used, such as in the aerospace and automotive industries. Nevertheless, the resonance of the cavity and the poor sound transmission loss at low frequencies limit the double panel's noise control performance. Applying active structural acoustic control to the panels or active noise control to the cavity has been discussed in many papers. In this paper, the resonances of the panels and the cavity are considered simultaneously to further reduce the transmitted noise through an existing double panel structure. A structural–acoustic coupled model is developed to investigate and compare various structural control and cavity control methods. Numerical analysis and real-time control results show that structural control should be applied to both panels. Three types of cavity control sources are presented and compared. The results indicate that the largest noise reduction is obtained with cavity control by loudspeakers modified to operate as incident pressure sources.  相似文献   

5.
Precast panels are widely used for the construction of large industrial buildings, trade centres and apartment houses. These buildings have to comply with prescribed noise and thermal requirements, so the possibility to accurately estimate the sound reduction index of such panels is of vital importance. The sound reduction index can be determined through measurements carried out in a laboratory or on an already mounted real-scale panel, but both solutions present problems. For example, precast structures consisting of two concrete panels coupled via an interlayer can be very bulky and heavy, and measurements in standard sound transmission laboratories may be impossible to carry out. In some countries, predictions based on theoretical models are accepted in lieu of measurements. Following this approach, the application of simple models, not accounting for the influence of coincidence and of losses, is not sufficient to make acceptable predictions. In this paper, an alternative method to estimate the sound reduction index of precast panels is proposed. Different panels have been considered in the study, each of which has been modelled by a mathematical representation found in the literature. It will be shown that all of these models can be synthesised by a common mathematical formulation, allowing the sound reduction index to be determined from point mobility measurements. The effectiveness of the new method has been investigated by comparing predicted and measured results, obtained in a sound transmission laboratory satisfying existing ISO standards.  相似文献   

6.
A new honeycomb core design has been used to increase the stiffness of the panel and applied to improve the noise transmission loss at frequencies between 100 and 200 Hz. A model is presented to predict the transmission loss of the honeycomb panels based on the structural modal parameters. A new test specimen with fiber reinforced plastic cores and face sheets had been used to investigate the effect of stiffness and damping on noise transmission loss. The measurements of noise transmission loss have been compared with data for common structural panels. The results show that the new core fabrication techniques using moulding to improve the noise transmission are effective. In comparison to a cement panel of the same mass, the honeycomb panels have higher TL at low frequencies between 100 and 200 Hz due to higher stiffness and damping. The honeycomb panels have more significant vibration responses above 500 Hz but these are limited by damping.  相似文献   

7.
In the context of the transmission of airborne noise into an aircaft fuselage, a mathematical model is presented for the transmission of an oblique plane sound wave into a finite cylindrical shell stiffened by stringers and ring frames. The rings and stringers are modeled as discrete structural elements. The numerical case studies was typical of a narrow-bodied jet transport fuselage. The numerical results show that the ring-frequency dip in the transmission loss curve that is present for a monocoque shell is still present in the case of a stiffened shell. The ring frequency effect is a result of the cylindrical geometry of the shell. Below the ring frequency, stiffening does not appear to have any significant effect on transmission loss, but above the ring frequency, stiffeners can enhance the transmission loss of a cylindrical shell.  相似文献   

8.
A preliminary analysis has been made of the use of vibration damping material as a means to reduce the cost of steel noise barriers in primarily highway applications. For cost-effective barriers, the sound transmission through, as well as over, a noise barrier must be considered. The through-barrier sound transmission characteristics of sample panels from a Toronto noise barrier were measured with and without damping material. It was found that a given through-barrier sound transmission performance could be achieved at less cost with the damping material than without it. Further study is recommended.  相似文献   

9.
The flutter instability of stiffened composite panels subjected to aerodynamic forces in the supersonic flow is investigated. Based on Hamilton's principle,the aeroelastic model of the composite panel is established by using the von Karman large deflection plate theory,piston theory aerodynamics and the quasi-steady thermal stress theory. Then,using the finite element method along with Bogner-Fox-Schmit elements and three-dimensional beam elements,the nonlinear equations of motion are derived. The effect of...  相似文献   

10.
Parts of an aircraft structure may be made to vibrate as a result of acoustic waves generated by various aircraft noise sources impinging on the structure. The stresses associated with this acoustically induced vibration may be sufficiently large to result in fatigue failure of portions of the structure. If acoustically induced fatigue cracks occur in the stiffened skin structures widely used in aircraft construction they may initiate in the skin panels near the stiffener attachment points. The initiation and subsequent propagation of these cracks at the panel edges is primarily due to the bending stresses arising from the out-of-plane vibration of the individual skin panels.The emphasis of the work described in this paper is on examining the growth rate of edge cracks in acoustically excited panels. A single panel with an edge crack is considered and this structural element is modelled as a flat plate clamped on three edges and part of the fourth. The crack is represented by the unclamped part of the fourth edge. Fracture mechanics principles are used to predict the crack growth rates associated with the first two modes of vibration of the edge cracked panel. The crack tip stress intensity factors associated with these panel modes are estimated by a technique based on finding the nominal bending stresses at the crack tips. The nominal bending stresses are in turn found from mode shapes determined by the Rayleigh Principle. The validity of the various assumptions is assessed by comparing the predicted crack growth rates with measured growth rates in panels representative of those used in aircraft construction.  相似文献   

11.
The problem of sound transmission through layered panel structures is studied with the exact theory of three-dimensional (3-D) elasticity. The exact solution to the 3-D elasticity equations is obtained by the use of the Fourier spectral method. Based on this analytical solution, a transfer matrix is derived that relates the spectral displacements and stresses on the one surface of the panel to those on the opposite panel surface. The transfer matrix is then used to develop the analytical solutions for sound reflection and transmission coefficients. Explicit, concise expressions are obtained for the analytical solutions of the acoustic transmission and reflection coefficients under the general conditions of layered anisotropic panels. Examples are given for both single-layer and sandwich panels. Predictions on sound transmission from the 3-D elasticity theory are compared with available data from other methods, and the results are discussed.  相似文献   

12.
Donnell type equations are used to calculate modal densities of thin cylindrical shells, stiffened by closely spaced eccentric rings and stringers, and subjected to axial stresses. The formulation presented degenerates to known results for unstiffened, unloaded shells. The effects of stiffeners and axial stresses on modal densities are examined by numerous examples, and qualitative conclusions referring to radiation efficiency and transmission ratio of the stiffened shells are drawn.  相似文献   

13.
An analytical method based on the modal expansion technique was developed to predict the vibro-acoustic response of both unidirectionally and bidirectionally stiffened flat panel. This paper presents the response to diffuse acoustic field (DAF) and turbulent boundary layer (TBL) excitations in terms of their joint acceptance. Numerical results for the dynamic and acoustic responses are compared with finite element method (FEM) and boundary element (BEM) results for stiffened panel with complex and eccentrically shaped stiffeners subject to point force excitation. A theoretical prediction of the transmission loss (TL) is also compared with laboratory measurements conducted on flat panels representing aircraft models as well as with hybrid statistical energy analysis (SEA)-FEM periodic model. The results confirm that the stiffened panel has the same acoustic response as the skin without stiffeners at frequencies where the structural wavelengths are equal to the spacing between the stiffeners. In addition, the transmission loss is lowered by the presence of the stiffeners at some particular region of frequencies below the critical frequency with respect to the unstiffened panel.  相似文献   

14.
胡莹  李晨曦  何立燕 《应用声学》2018,37(6):916-926
采用散射矩阵法分析夹层板结构声学特性,并对典型的夹层板结构即飞机壁板进行声学优化,预计飞机壁板隔声特性,获得蒙皮、隔声隔热层、内饰板及它们的组合结构的声学性能。针对尾吊飞机客舱后部噪声过大问题,通过增加铺设隔热隔声层以及部分区域优化安装阻尼层等一系列被动降噪处理方法,对主要传递路径的飞机壁板结构进行优化,降低客舱后部噪声水平,并进行试验验证。试验结果表明:散射矩阵法可快速准确获得夹层结构的隔声性能,并与混响室法测试结果吻合较好;在厚度不变的前提下,改变隔热隔声层的铺设方式和材料密度对壁板隔声性能影响较小,但在蒙皮内侧粘贴阻尼层能在一定频段范围提高壁板隔声性能;将优化的壁板构型应用到飞机后舱段侧壁板,舱内噪声水平可降低约3 dB。  相似文献   

15.
The control of sound transmission through panels is an important noise control problem in the aerospace, aeronautical, and automotive industries. The trend towards using lightweight composite materials that have lower sound insulation performance is a negative factor regarding low frequency transmission loss. Double-panel partitions with the gap filled with sound absorption materials are often employed to improve the sound insulation performance with reduced added weight penalty. However, in the low frequency range, the strong coupling between the panels through the air cavity and mechanical paths may greatly reduce the sound transmission performance, making it even lower than the performance of a single panel in some frequency ranges. In this work, an experimental investigation of a new kind of hybrid (active/passive) acoustic actuator is presented. The idea consists of replacing the acoustic absorption material by a hybrid actuator aiming at improving the transmission loss at low frequencies without altering the passive attenuation. A prototype of the system is tested in a plane wave acoustic tube setup. Different kinds of SISO feedforward control implementations were used to attenuate the sound power transmitted through the hybrid active–passive panel using an error microphone or a particle velocity sensor placed downstream with respect to the sample panel. Measurement results of the transmission loss with active and hybrid attenuation are presented and discussed.  相似文献   

16.
Noise from external sources penetrates a plane cabin through the board construction in several ways. They include direct penetration through loose-fiber layers and indirect penetration through the attachment points of interior panels to transverse ribs (bulkheads). The analytical method of calculating vibrations of an orthogonally supported shell (developed by us earlier) makes it possible to correctly calculate bulkhead vibrations. As a result, noise penetration into the cabin through the attachment points of interior panels can be determined analytically. The first part of the solution to this problem is presented (i.e., the relations and examples of calculating bulkhead vibrations upon point excitation of the shell and excitation by pressure fluctuations of the turbulent boundary layer are given).  相似文献   

17.
Much of the research on sound transmission through the aircraft fuselage into the interior of aircraft has considered coupling of the entire cylinder to the acoustic modes of the enclosure. Yet, much of the work on structural acoustic control of sound radiation has focused on reducing sound radiation from individual panels into an acoustic space. Research by the authors seeks to bridge this gap by considering the transmission of sound from individual panels on the fuselage to the interior of the aircraft. As part of this research, an analytical model of a curved panel, with attached piezoelectric actuators, subjected to a static pressure load was previously developed. In the present work, the analytical model is extended to consider the coupling of a curved panel to the interior acoustics of a rigid-walled cylinder. Insight gained from an accurate analytical model of the dynamics of the noise transmission from the curved panels of the fuselage into the cylindrical enclosure of an aircraft is essential to the development of feedback control systems for the control of stochastic inputs, such as turbulent boundary layer excitation. The criteria for maximal structural acoustic coupling between the modes of the curved panel and the modes of the cylindrical enclosure are studied. For panels with aspect ratios typical of those found in aircraft, results indicate that predominately axial structural modes couple most efficiently to the acoustic modes of the enclosure. The effects of the position of the curved panel on the cylinder are also studied. Structural acoustic coupling is found to not be significantly affected by varying panel position. The impact of the findings of this study on structural acoustic control design is discussed.  相似文献   

18.
The consistent higher-order approach and the two-parameter foundation formulation are used for the derivation of sound transmission loss in symmetric unidirectional (infinitely wide) sandwich panels with isotropic face sheets. In both models, transmission loss is calculated using decoupled equations representing symmetric and anti-symmetric motions of a sandwich panel. The closed-form expressions for impedances and transmission coefficient of a symmetric sandwich panel with an isotropic core are derived for the two-parameter foundation model. A comparison between the numerical predictions based on the two sandwich models and available experimental data shows that the consistent higher-order formulation can be used to predict the transmission loss in symmetric sandwich panels with both honeycomb and isotropic cores. For prediction of transmission loss of symmetric sandwich panels with an isotropic core, the two-parameter foundation model is more convenient, while the consistent higher-order approach is more accurate.  相似文献   

19.
Free vibration characteristics of rectangular stiffened plates having a single stiffener have been examined by using the finite difference method. A variational technique has been used to minimize the total energy of the stiffened plate and the derivatives appearing in the energy functional are replaced by finite difference equations. The energy functional is minimized with respect to discretized displacement components and natural frequencies and mode shapes of the stiffened plate have been determined as the solutions of a linear algebraic eigenvalue problem. The analysis takes into consideration inplane deformation of the plate and the stiffener and the effect of inplane inertia on the natural frequencies and mode shapes. The effect of the ratio of stiffener depth to plate thickness on the natural frequencies of the stiffened plate has also been examined.  相似文献   

20.
The problem of sound transmission and reflection from unbounded panels of functionally graded materials is studied using an analytical approach. By means of matrix manipulation and Fourier component analysis, the three-dimensional (3-D) governing equations of elastodynamics are converted into a system of ordinary differential equations with variable coefficients in the frequency and wavenumber domain. Integration of the ordinary differential equation system across the panel thickness leads to a closed-form solution for the transfer matrix. Analytical expressions are then obtained for sound reflection and transmission coefficients for panels of functionally graded materials. The present model is used to predict sound transmission losses for various panel examples. The results compare well with published data from other methods, thereby validating the accuracy of the formulation developed in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号