首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
中国散裂中子源加速器质子束流加速能量为1.6 GeV,重复频率为25 Hz,撞击固体金属靶产生散射中子,一期工程的打靶束流功率为100 kW。直线加速器的设计束流流强为15 mA,输出能量为81 MeV。射频加速和聚束系统包括一台射频四极场加速器、中能束流传输线的两个聚束器、四节漂移管直线加速器加速腔和直线-环束流传输线的一个散束器,与之相对应,共有8个单元在线运行的射频功率源为其提供所需的射频功率。目前,直线射频功率源系统预研项目已全部完成,各项性能参数均已达到设计指标,当前正处在批产安装调试阶段。151013  相似文献   

2.
基于超导器的连续波运行的高流强质子/氘束被越来越多的大科学装置所采用。在流强低于10 mA情况下,用于加速低段粒子的超导腔的高阶模影响基本可以忽略,但是对于加速百mA强流的低超导腔,其高阶模损耗情况有待研究。近期北京大学设计并加工了一支=0.09、运行频率162.5 MHz的超导半波长谐振腔,用于研究非相对论低超导半波长谐振腔加速100 mA强流质子束时可能涉及到的关键物理问题。重点研究了这支半波长谐振腔内部高阶模损耗的问题,用时域和频域两种方法分别计算了腔的高阶模损失因子,同时计算了考虑加工误差下腔内发生高阶模共振激发的概率。  相似文献   

3.
Accelerator-driven systems (ADS) have evoked lot of interest the world over because of their capability to incinerate the MA (minor actinides) and LLFP (long-lived fission products) radiotoxic waste and their ability to utilize thorium as an alternative nuclear fuel. One of the main subsystems of ADS is a high energy (∼1 GeV) and high current (∼30 mA) CW proton Linac. The accelerator for ADS should have high efficiency and reliability and very low beam losses to allow hands-on maintenance. With these criteria, the beam dynamics simulations for a 1 GeV, 30 mA proton Linac has been done. The Linac consists of normal-conducting radio-frequency quadrupole (RFQ), drift tube linac (DTL) and coupled cavity drift tube Linac (CCDTL) structures that accelerate the beam to about 100 MeV followed by superconducting (SC) elliptical cavities, which accelerate the beam from 100 MeV to 1 GeV. The details of the design are presented in this paper.  相似文献   

4.
In this report, the purpose and status of the currently constructed ITEP experimental accelerator driven system (XADS) are discussed. This hybrid electro-nuclear facility of moderate power integrates the pulse proton linac (36 MeV, 0.5 mA) and heavy water sub-critical blanket assembly (heat power of 100 kW). Most parts of the equipment units are ordered for industrial manufacturing and some are under development. The facility is supposed to be used for investigations of a wide range of problems concerning both the target-blanket assembly and the accelerator-driver and at the same time explore the dynamical processes arising during their combined operation. Some other applications of the proton beam and neutron source are also discussed. It is possible in future to increase the current and energy of proton or heavy ion beam.   相似文献   

5.
加速器驱动系统 (ADS)是一种新型的洁净能源装置 ,它采用加速器提供的强流高能量质子束驱动次临界的核反应堆 ,既有安全可靠和产生核废料少的优点 ,还可以处理传统反应堆留下的核废料 .能量放大器是一个基于回旋加速器组合的 ADS方案 ,由三级回旋加速器组成的加速器系统可以产生流强为12 m A和能量为1 .2 Ge V的质子束 (束流功率1 4.4MW) ,用以驱动1500 MW的核反应堆. Accelerator Driving System (ADS) is a new device for cleaning energy. A high intensity, high power proton beam provided by accelerators is used to drive a sub critical nuclear reactor. It is safe, reliable and can produce less nuclear waste, and also can be used to treat the nuclear waste from the classical reactor. An Energy Amplifier (EA), which is composed of three cyclotrons, is one type of ADS. It will be used to produce 14.4 MW proton beam (12 mA, 1.2 GeV) and to operate a 1 500 MW nuclear reactor.  相似文献   

6.
EURISOL foil-targets have to withstand a primary proton beam of 1 GeV kinetic energy and up to 100 μA beam current. These foil targets will be based on previous high-power target concepts, i.e. the RIST target [J.R.J. Bennett et al., Nucl. Instrum. Meth. Phys. Res. B 126, 117 (1997)] or high power targets used at TRIUMF [P. Bricault et al., Nucl. Instrum. Meth. Phys. Res. B 204, 319 (2003), M. Dombsky et al., Nucl. Instrum. Meth. Phys. Res. B 204, 191 (2003)]. A single target unit is capable of dissipating up to 25 kW, hence, several target units can be merged together by individual transfer lines to one common ion source. The single target units will be irradiated by a proton beam in a time sharing mode to distribute the primary proton beam current to the individual target units. In this feasibility study the necessary properties of high-power foil targets are discussed and the requirements to design a foil target according to the proton beam parameters [CITE] for the future EURISOL facility are given.  相似文献   

7.
The target system is one of the key issues for the facilities aimed at the production of neutron-rich radioactive ion beams. In the framework of the SPES project (Study for the Production of Exotic Species), the possibility of using a target configuration with a proton beam (40MeV, 0.2mA) directly impinging on multiple uranium carbide disks is investigated. The 238U fission fragments constitute the source for the exotic beams and for this purpose the disks are placed inside a graphite box at 2000 °C. The target is split into several thin disks in order to allow the cooling of the system by thermal radiation. In this way about ∼ 1013 fissions s -1 are obtained with a relative simple system and with relative low costs. Further steps have been performed compared to previous publications and now all the main parameters of the system have been analysed by means of calculation codes: the fission rates and the fission fragment distribution; the power deposition and the thermal analysis; the thermo-mechanical behaviours of the disks; the effusive and diffusive extraction release properties of the target.  相似文献   

8.
In an accelerator-driven subcritical system (ADS), a high-performance spallation neutron source is used to feed the subcritical reactor. Neutron generation depends on the proton beam intensity. If the beam intensity is increased by a given factor, the number of generated neutrons will increase. The mechanism yielding a high rate of neutron production per energy is the spallation process, and this mechanism produces a very high-energy deposition in the spallation target material. Producing a high rate of neutrons is accompanied by creation of problems of decay heat cooling and radiological protection. As a first step in designing a full-scale industrial ADS, a small-scale experimental ADS, which is similar to the European experimental ADS (XADS) is analysed. The analysis presented in this paper is based on lead–bismuth eutectic (LBE) cooled XADS-type experimental reactors, designed during the European experimental (PDS-XADS) project. Computational fluid dynamics analysis has been carried out for the spallation target. Steady state behaviour and shear stress transport turbulence model with the automatic wall treatment were applied in the present analysis.  相似文献   

9.
The China Spallation Neutron Source (CSNS) is a large scientific facility with the main purpose of serving multidisciplinary research on material characterization using neutron scattering techniques. The accelerator system is to provide a proton beam of 120 kW with a repetition rate of 25 Hz initially (CSNSⅠ), progressively upgradeable to 240 kW (CSNS-Ⅱ) and 500 kW (CSNS-Ⅱ'). In addition to serving as a driving source for the spallation target, the proton beam can be exploited for serving additional functions both in fundamental and applied research. The expanded scientific application based on pulsed muons and fast neutrons is especially attractive in the overall consideration of CSNS upgrade options. A second target station that houses a muon-generating target and a fast-neutron-generating target in tandem, intercepting and removing a small part of the proton beam for the spallation target, is proposed. The muon and white neutron sources are operated principally in parasitic mode, leaving the main part of the beam directed to the spallation target. However, it is also possible to deliver the proton beam to the second target station in a dedicated mode for some special applications. Within the dual target configuration, the thin muon target placed upstream of the fast-neutron target will consume only about 5% of the beam traversed; the majority of the beam is used for fast-neutron production. A proton beam with a beam power of about 60 kW, an energy of 1.6 GeV and a repetition rate of 12.5 Hz will make the muon source and the white neutron source very attractive to multidisciplinary researchers.  相似文献   

10.
The electron proton (e-p) instability has been observed in many proton accelerators. It will induce transverse beam size blow-up, cause beam loss and restrict the machine performance. Much research work has been done on the causes, dynamics and cures of this instability. A simulation code is developed to study the e-p instability in the ring of the China Spallation Neutron Source (CSNS).  相似文献   

11.
The electron proton (e-p) instability has been observed in many proton accelerators. It will induce transverse beam size blow-up, cause beam loss and restrict the machine performance. Much research work has been done on the causes, dynamics and cures of this instability. A simulation code is developed to study the e-p instability in the ring of the China Spallation Neutron Source (CSNS).  相似文献   

12.
A new procedure for the design and simulation of a Radio Frequency Quadrupole (RFQ) accelerator has been developed at the Argonne National Laboratory. This procedure is integrated with the beam dynamics design code DESRFQ and the simulation code TRACK, which are based on three-dimensional field calculations and the particle-in-cell mode beam dynamics simulations. This procedure has been applied to the development of a 162.5 MHz CW RFQ which is capable of delivering a 10 mA proton beam for the Accelerator Driven System (ADS) of the CAS. The simulation results show that this RFQ structure is characterized by the stable values of the beam acceleration efficiency for both the zero current beam and space charge dominated beam. For an average beam current of 10 mA, there is no transverse rms emittance growth, the longitudinal rms emittance at the exit of RFQ is low enough and there is no halo formation. The beam accelerated in the RFQ could be accepted easily and smoothly by the following super-conducting linear accelerator.  相似文献   

13.
We have observed simultaneously both the fast proton generation and terahertz (THz) radiation in the laser pulse interaction with a 5-μm thick titanium target. In order to control the proton acceleration and THz radiation, we have changed the duration of the amplified spontaneous emission (ASE) preceding the main pulse generated by the high-intensity Ti:sapphire laser. A fast proton beam with the maximal energy of ∼ 490 keV has been realized by reducing the duration of the ASE. Simultaneously, an intense emission of THz radiation is observed for various ASE durations. We propose the antenna mechanism for the THz radiation, according to which the fast electrons moving along the target surface emit the low-frequency electromagnetic wave. PACS 52.25.Os; 52.38.Kd; 52.50.Jm  相似文献   

14.
The beam test of the 250MeV section of BEPC 1.1/1.4GeV e± LINAC was performed four times during its installation phase.In May of 1987,electron beam of 760mA and 250MeV was obtained and positron beam current of 2.5mA and 99MeV was observed when an electron beam of 785MeV bombarding a tungsten target.The main parameters of LINAC met the design values and achieved the same technical level of similar accelerators in other countries.  相似文献   

15.
KALI-1000 pulse power system has been used to generate single pulse nanosecond duration high-power microwaves (HPM) from a virtual cathode oscillator (VIRCATOR) device. HPM power measurements were carried out using a transmitting-receiving system in the presence of intense high frequency (a few MHz) electromagnetic noise. Initially, the diode detector output signal could not be recorded due to the high noise level persisting in the ambiance. It was found that the HPM pulse can be successfully detected using wide band antenna, RF cable and diode detector set-up in the presence of significant electromagnetic noise. Estimated microwave peak power was ∼59.8 dBm (∼1 kW) at 7 m distance from the VIRCATOR window. Peak amplitude of the HPM signal varies on shot-to-shot basis. Duration of the HPM pulse (FWHM) also varies from 52 ns to 94 ns for different shots.  相似文献   

16.
Compared with conventional accelerators,laser plasma accelerators can generate high energy ions at a greatly reduced scale,due to their TV/m acceleration gradient.A compact laser plasma accelerator(CLAPA) has been built at the Institute of Heavy Ion Physics at Peking University.It will be used for applied research like biological irradiation,astrophysics simulations,etc.A beamline system with multiple quadrupoles and an analyzing magnet for laser-accelerated ions is proposed here.Since laser-accelerated ion beams have broad energy spectra and large angular divergence,the parameters(beam waist position in the Y direction,beam line layout,drift distance,magnet angles etc.) of the beamline system are carefully designed and optimised to obtain a radially symmetric proton distribution at the irradiation platform.Requirements of energy selection and differences in focusing or defocusing in application systems greatly influence the evolution of proton distributions.With optimal parameters,radially symmetric proton distributions can be achieved and protons with different energy spread within ±5% have similar transverse areas at the experiment target.  相似文献   

17.
A possible solution for a target system aimed at the production of exotic nuclei as a result of high energy fissions in 238U compounds has been analyzed. The proposed configuration is constituted by a primary proton beam (40 MeV, 0.2 mA) directly impinging on uranium carbide disks inserted within a cylindrical carbon box. This system has been conceived to obtain both a high number of neutron rich atoms (originated from about 1013 fissions/s) and a low power deposition in the target. In order to extract the fission fragments, the box has to be hold at 2000C. The thermal analysis shows the capability of the thermal radiation to cool the disks with a reasonable margin below the material melting point. Moreover, the analyses of the thermo-mechanical behaviour and of the effusion times confirm the promising features of this target configuration.  相似文献   

18.
The noncatalytic conversion of propane mixtures with air into synthesis gas in a chemical “super-adiabatic” compression reactor with cyclic action based on an internal combustion engine was studied by numerical simulation. The conversion process was analyzed for a chemical reactor with two-stage compression and internal heat regeneration. It was shown that an almost 100% conversion of propane into synthesis gas can be performed in a two-stage compression reactor at the initial propane content in a mixture up to 12.3% and compression pressure ∼90 atm (compression degree ∼20), which is unrealistic with usual one-stage compression. Useful mechanical energy can be produced when the reactor works. In a chemical compression reactor with heat regeneration, almost 100% propane conversion into synthesis gas can be performed at the initial propane content in a mixture up to 11% and compression pressure ∼200 atm (compression degree ∼20). The process does not require mechanical energy expenditures at a propane concentration in the initial mixture lower than 10%.  相似文献   

19.
The use of an electronic cooling system at the High Intensity heavy ion Accelerator Facility (HIAF) accelerator complex, which is being developed at the Institute of Modern Physics (China), to improve the efficiency of ion injection into the accelerator and reduce the spread of ion pulses in the beam has been proposed. Electron cooling of the ion beam was carried out due to the interaction of ions with a continuous electron beam with a current of up to 3 A, energy of up to 450 keV, and energy stability at the level of 10–4 or better. The electron beam energy recuperation was carried out at the expense of a power source with a power of 5–15 kW, which was located at the top of a high-voltage column—a high-voltage terminal. The operation of a prototype of power transmission system, which was based on a cascade transformer with a volumetric coil, has been considered. Such a transformer has a relatively low scattering inductance, which can significantly reduce the number of capacitors to compensate for it. It has been shown that this design made it possible to transfer power of up to 40 kW at small dimensions of the transformer and heat dissipation in it was not more than 10 kW.  相似文献   

20.
Monte Carlo calculations have been performed using MCNP code to study the optimization of photo-neutron yield for different electron beam energies impinging on Pb, W and Ta cylindrical targets of varying thickness. It is noticed that photo-neutron yield can be increased for electron beam energies ≥100 MeV for appropriate thickness of the target. It is also noticed that it can be maximized by further increasing the thickness of the target. Further, at higher electron beam energy heat gradient in the target decreases, which facilitates easier heat removal from the target. This can help in developing a photoneutron source based on electron LINAC by choosing appropriate electron beam energy and target thickness to optimize the neutron flux for ADS, transmutation studies and as high energy neutron source etc. Photo-neutron yield for different targets, optimum target thickness and photo-neutron energy spectrum and heat deposition by electron beam for different incident energy is presented.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号