首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Thermal-hydraulic analysis of LBE spallation target for accelerator-driven systems
Authors:ANISEH AHMED ATEF ABDALLA  JIYANG YU  YONGWEI YANG
Institution:1. Department of Engineering Physics, Tsinghua University, Beijing, 100084, China
2. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
Abstract:In an accelerator-driven subcritical system (ADS), a high-performance spallation neutron source is used to feed the subcritical reactor. Neutron generation depends on the proton beam intensity. If the beam intensity is increased by a given factor, the number of generated neutrons will increase. The mechanism yielding a high rate of neutron production per energy is the spallation process, and this mechanism produces a very high-energy deposition in the spallation target material. Producing a high rate of neutrons is accompanied by creation of problems of decay heat cooling and radiological protection. As a first step in designing a full-scale industrial ADS, a small-scale experimental ADS, which is similar to the European experimental ADS (XADS) is analysed. The analysis presented in this paper is based on lead–bismuth eutectic (LBE) cooled XADS-type experimental reactors, designed during the European experimental (PDS-XADS) project. Computational fluid dynamics analysis has been carried out for the spallation target. Steady state behaviour and shear stress transport turbulence model with the automatic wall treatment were applied in the present analysis.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号