首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 500 毫秒
1.
利用水电极介质阻挡放电装置,在氩气和空气的混合气体中,首次观察到了由点和线组成的八边形结构。采用发射光谱法,研究了八边形结构中的点和线的等离子体温度随压强的变化关系。利用氮分子第二正带系(C3ΠuB3Πg)的发射谱线,计算了点和线的分子振动温度;通过氮分子离子391.4 nm和氮分子394.1 nm两条发射谱线的相对强度比,研究了点和线的电子平均能量大小变化;利用氩原子763.26 nm(2P6→1S5)和772.13 nm(2P2→1S3)两条谱线强度比法,得到了点和线的电子激发温度。实验发现:在同一压强条件下,线比点的分子振动温度、电子平均能量以及电子激发温度均高;随着气体压强从40 kPa增大到60 kPa,点和线的分子振动温度、电子平均能量以及电子激发温度均减小。  相似文献   

2.
设计了水电极放电装置,在空气/氩气混合气体中实现了大面积沿面放电。采用发射光谱法,对分子振动温度、电子平均能量和电子激发温度等随气压的变化进行了研究。根据氮分子第二正带系(C3ΠuB3Πg)的发射谱线计算出氮分子的振动温度;使用Ar 763.51 nm(2P6→1S5)和772.42 nm(2P2→1S3)的两条发射谱线的强度比得到电子激发温度;通过氮分子离子391.4 nm和氮分子337.1 nm两条发射谱线的相对强度之比得出了电子的平均能量的变化。实验研究了发射光谱随气压的变化,发现其强度随着气压的增加而增强,且其整个轮廓和谱线强度之比也发生变化。随着气压从0.75×105Pa升高到1×105Pa,分子振动温度、电子激发温度和电子能量均呈下降趋势。  相似文献   

3.
近大气压条件下,在介质阻挡放电系统中得到了氩气和空气混合气体在300~800 nm范围内的发射光谱,研究了中等pd值(约6.4×103 Pa·cm) 氩气和空气混合气体中电子激发温度与分子振动温度。实验选用两条ArⅠ谱线763.51 nm(2P6→1S5)与772.42 nm(2P2→1S3),用强度对比法测量电子激发温度,利用氮分子第二正带系(C 3ΠuB 3Πg)计算氮分子振动温度。实验结果表明:电子激发温度和分子振动温度均随电压的增加而增加,并且电子激发温度随电压的变化速率大于分子振动温度的变化速率。  相似文献   

4.
采用光谱法, 研究了氩气/空气混合气体介质阻挡放电中蜂窝斑图形成过程中等离子体参量的变化。实验发现,随着电压的增加,放电经历六边形点阵斑图及疏密点同心圆环斑图后,形成了蜂窝斑图。利用氮分子第二正带系(C3ΠuB3Πg)的发射谱线、氩原子763.26 nm(2P6→1S5)与772.13 nm(2P2→1S3)两条谱线强度比法和氩原子696.57 nm(2P2→1S5)谱线的展宽,分别研究了上述三种斑图的分子振动温度、电子激发温度和电子密度。结果发现:蜂窝斑图的分子振动温度和电子激发温度均高于六边形点阵斑图相应的温度,但其电子密度却比后者的电子密度低。实验还通过电容法,测量了放电斑图的放电功率,发现蜂窝斑图的放电功率远远高于六边形点阵斑图的放电功率。工作结果对于研究介质阻挡放电自组织斑图的形成机制具有重要意义。  相似文献   

5.
氩气含量对介质阻挡放电中单丝等离子体温度的影响   总被引:1,自引:0,他引:1  
在空气与氩气组成的混合气体放电中,首次研究了由中心点和外层晕组成的单丝。从照片中观察单丝结构,发现混合气体中氩气所占的比例越重,单丝的直径随之越小,同时中心点和外层晕的亮度有明显的差异,说明中心点和外层晕可能处于不同的等离子体状态。实验对单丝结构进行了光学时空分辨测量,研究了中心点和外层晕两层结构的微观特性。利用发射光谱法,详细地研究了该单丝结构的中心点和外层晕的等离子体参数随氩气含量的变化关系。实验根据氮分子第二正带系(C3ΠuB3Πg)谱线计算了中心点和外层晕的分子振动温度;通过氮分子离子N+2(391.4 nm) 第一负带系谱线与氮分子N2(394.1nm)谱线强度比,反映中心点和外层晕的电子平均能量随氩气含量的变化关系;利用氩原子763.2 nm(2P6→1S5)和772.077 nm(2P2→1S3)两条谱线的相对强度比法,估算了中心点和外层晕的电子激发温度。结果表明:中心点的光信号对应着第一个电流脉冲, 且其光信号较弱;而外层晕的光信号同时对应着第一个和第二个电流脉冲, 且其光信号较强。在相同的氩气含量条件下,外层晕比中心点的分子振动温度、电子平均能量以及电子激发温度均要高。随着氩气含量从30%逐渐增大到50%,中心点和外层晕的分子振动温度是逐渐减小的,而电子平均能量和电子激发温度均是逐渐增大的。  相似文献   

6.
在介质阻挡放电系统中,空气和氩气混合气体的实验条件下,第一次实现了只具有一个单元结构的白眼斑图。该斑图的结构从中心位置向外依次为:中心点,围绕中心点的环和环外六个点。由于出现该单晶胞白眼斑图时的电压较低,而本实验采用的水电极中的水的比热容大,具有良好的吸热性,这使斑图在放电过程中放电气隙间的气体的温度没有升高,并且放电现象没有发生变化。因此在实验过程中,单晶胞白眼斑图在长时间放电的情况下并没有使其等离子体状态发生改变。由普通照相机所拍摄的图片可以看到,单晶胞白眼斑图的中心点,围绕中心点的环和环外六个点的亮度有明显不同。在不同压强下该斑图的稳定性有所不同,并且中心点,围绕中心点的环和环外六个点的亮度随压强的变化有所不同。鉴于此,本实验采用了发射光谱法,研究了单晶胞白眼斑图中不同位置处(中心点、环及外围六个点)的等离子体温度随压强的变化关系。其中,分子振动温度使用氮分子第二正带系(C3ΠuB3Πg)的发射谱线来计算;电子激发温度利用氩原子763.26 nm(2P6→1S5)与772.13 nm(2P2→1S3)两条谱线强度值进行比较的方法进行研究;电子密度利用氩原子696.57 nm(2P2→1S5)谱线的展宽来测量。发现在同一实验条件下,单晶胞白眼斑图的中心点的电子激发温度、电子密度和分子振动温度均最低,环外六个点相应的电子激发温度、电子密度和分子振动温度次之,环相应的电子激发温度、电子密度和分子振动温度均最高;随着气体压强从40 kPa增大到60 kPa,单晶胞白眼斑图不同位置处的电子密度增高但分子振动温度和电子激发温度均降低。本实验结果有助于进一步研究自组织斑图形成的机制。  相似文献   

7.
空气介质阻挡放电不同放电模式的光谱特性   总被引:1,自引:0,他引:1  
采用光谱方法,研究了空气介质阻挡放电中流光向类辉光转变时电子能量的变化。利用氮分子第二正带系(C3ΠuB3Πg)的发射谱线,测量了氮分子(C3Πu)的振动温度。通过考察氮分子离子391.4 nm谱线强度与氮分子337.1 nm谱线强度之比,研究了电子平均能量的变化。结果表明,流光向类辉光转变时,氮分子(C3Πu)的振动温度激增,氮分子离子391.4 nm相对谱线强度突增,表明类辉光放电模式中电子能量比流光放电模式中电子能量高很多。实验还发现,气隙间距不同,这两种放电模式转变所对应的转变气压不同,但转变气压与气隙间距的乘积值保持不变。  相似文献   

8.
利用发射光谱法对金属管内形成的稳定氩氮直流辉光等离子体进行了诊断。通过对等离子体发射光谱谱线的研究确定了等离子体中的活性粒子成分;根据氩原子的玻尔兹曼曲线斜率法计算了等离子体中的电子激发温度;采用氮分子第二正带系跃迁(C3ΠuB3Πg)的发射谱线计算了等离子体中的氮分子振动温度;研究了电子激发温度和氮分子振动温度随压强的变化特征。研究结果表明,在20 Pa下产生的Ar60%+N240%直流辉光等离子体中,活性成分主要是Ar原子、Ar离子、N2的第二正带系跃迁(C3ΠuB3Πg)和N+2的第一负带系跃迁(B2Π+uX2Σ+g);电子激发温度约为(15 270±250)K;氮分子(C3Πu)振动温度约为(3 290±100)K;随着压强的增加电子激发温度、分子振动温度逐渐降低。文章的研究结果对细长金属管内表面改性研究具有重要的意义。  相似文献   

9.
在空气与氩气按比例混合组成的气体放电中,研究了由中心点和六边形晕组成的六边形晕斑图。从照片中观察六边形晕斑图结构,发现中心点和六边形晕的亮度有明显的差异,说明中心点和六边形晕可能处的等离子体状态不同。利用发射光谱法,详细研究了该六边形晕斑图结构的中心点和六边形晕的等离子体参数随压强的变化关系。实验根据氮分子第二正带系(C3ΠuB3Πg)谱线计算了中心点和六边形晕的分子振动温度;通过氮分子离子(391.4 nm) 与氮分子(394.1nm)谱线强度比,反映中心点和六边形晕的电子平均能量;利用氩原子696.5 nm(2P2→1S5)谱线的展宽,研究了电子密度。实验结果表明: 六边形晕斑图主要范围是氩气含量从60%~75%、压强从30~46 kPa。在相同的压强条件下,六边形晕比中心点的分子振动温度、电子平均能量均要高。随着压强从30 kPa逐渐升高到46 kPa,中心点和六边形晕的分子振动温度、电子平均能量是逐渐增大的。在相同的压强条件下,六边形晕比中心点的谱线展宽要大,且随着压强的升高而增加,表明电子密度随着压强的增大而升高。六边形晕和中心点的等离子体的状态不同,说明二者放电机制上的差异。进一步采用高速照相机对斑图的电流脉冲进行分脉冲瞬时拍摄,发现中心点是由先放电的体放电形成,而六边形晕是由放电晚于体放电的沿面放电形成。  相似文献   

10.
在氩气和空气混合气体介质阻挡放电中,首次发现了团簇六边形斑图。运用发射光谱法,研究了此斑图中单个团簇的三种等离子体参数:分子振动温度、分子转动温度以及电子的平均能量随空气含量的变化。实验通过测量氮分子光谱并采用氮分子第二正带系(C3ΠuB 3Πg)计算了振动温度;同时采集氮分子离子(N+2)的第一负带系(B 2Σ+uX 2Σ+g)计算转动温度。利用氮分子离子391.4 nm和激发态的氮分子337.1 nm两条发射谱线的相对强度之比,作为研究电子平均能量的变化的依据。结果显示,当混合气体中空气含量从16%逐渐增大到24%时,三种等离子体参数均逐渐增大。  相似文献   

11.
大气压氩气介质阻挡放电中的电子激发温度   总被引:8,自引:4,他引:4  
采用发射光谱强度比法,测量了大气压氩气介质阻挡放电(DBD)中的电子激发温度。实验在690~800 nm的范围内测量了大气压氩气DBD的发射光谱,经分析发现这些谱线全部是氩原子的发射谱线。为了测量电子激发温度,选用相距较近的763.51 nm(2P6→1S5),772.42 nm(2P2→1S3)的两条光谱线。结果发现电子温度的范围为0.1~0.5 eV,电子激发温度随电压的增加而增加,随流量的增加而减小。实验还发现氩气流动与非流动时电子激发温度有明显的差别。上述结果对介质阻挡放电在工业领域上的应用具有重要意义。  相似文献   

12.
Dong LF  Lü YH  Liu WY  Yue H  Lu N  Li XC 《光谱学与光谱分析》2010,30(12):3183-3185
利用平行管水电极介质阻挡放电装置,在氩气和空气混合气体中,得到了狭缝微放电等离子体。利用发射光谱法,研究了此放电中分子振动温度、分子转动温度和电子的平均能量随气体压强的变化。通过氮分子第二正带系(C3Πu→B3Πg)的发射谱线计算了氮分子的振动温度;利用氮分子离子(N2+)的第一负带系(B2Σu+→X2Σg+)的发射谱线计算了氮分子的转动温度;测量了氮分子离子391.4 nm和激发态的氮分子337.1 nm两条发射谱线的相对强度之比,研究了电子能量的变化。结果表明,当压强从60 kPa增大到100kPa,分子振动温度及分子转动温度均减小,氮分子离子谱线与激发态的氮分子谱线的强度之比亦减小。  相似文献   

13.
采用蒙特卡罗方法,对以CH4/H2为源料气体的电子助进化学气相沉积(EACVD)金刚石中的氢原子(Hα, Hβ, Hγ)、碳原子C(2p3s2p2∶λ=165.7 nm)以及CH(A2Δ→X2Πλ=420~440 nm)的光发射过程进行了模拟,气体温度随空间的变化采用温度梯度变化,研究了不同反应室气压及衬底温度下的光发射谱特性。结果表明,不同衬底温度下各谱线强度均随气压的增大先增大后减小; 当气压较低时,谱线强度随衬底温度的增大而减少,而气压较高时,谱线强度随衬底温度的增大而增大。  相似文献   

14.
Li SZ  Wu Q  Xu MC  Li H  Wang YX 《光谱学与光谱分析》2011,31(11):2891-2895
实验中在大气压下在射频(13.56 MHz)容性耦合的平板形金属电极的构型中实现了氩/氮射频α模式的辉光放电.首先,采用发射光谱的方法测量了氮分子(C 3Ⅱu)谱线随氮气含量的变化;其次,使用玻耳兹曼斜率法估算了OH谱带(A2∑+→X 2Ⅱ)的转动温度,并得到等离子体温度随输入功率的变化规律.最后,选取氮的第二正带(C...  相似文献   

15.
使用水电极介质阻挡放电装置,对比氩气与氩气/少量空气的混合气体以及空气与空气/少量氩气的混合气体放电的发射光谱,研究了氩气与空气相混合时气体放电中的能量传递过程。实验发现, 当氩气中加入少量的空气时,氩原子谱线均变弱,说明空气中的氮分子对氩原子的各激发态具有猝灭作用。并且随着空气含量的增加,各谱线变弱的速率不同。越是与氮分子的激发电位接近的氩原子的激发态被猝灭的作用越明显。另一方面,当空气中加入少量氩气时,发现氮分子第二正带系和氮分子离子第一负带系的谱线均被增强。说明在空气/少量氩气放电中,氮分子的激发由于亚稳态氩原子的潘宁激发传能而增强。因此在氩气/空气混合气体放电中,气体成分及比例影响放电的发光特性和能量传输特性。  相似文献   

16.
利用发射光谱研究脉冲电晕放电中的自由基   总被引:12,自引:2,他引:10  
利用发射光谱技术在大气压下测量了以氮气为载气的不饱和水蒸气体系针-板式正脉冲电晕放电产生的OH(A^2∑→X^2Ⅱ0—O)自由基和O(3p^5P→3s^5S^02777.4nm),Ha(3P→2S 656.3nm)活性原子的发射光谱,并由N2(C^3Ⅱu→B^3Ⅱg)的△v=-3和△v=-4振动带序发射光谱强度计算得出N2(C,v)的相对振动布居及其振动温度,进而采用高斯分布拟合准确地求出了N2(C^3Ⅱu→B^3Ⅱg)的△v= 1振动带序发射光谱强度,从而可以由N2(C^3Ⅱu→B^3Ⅱg)的△v= 1振动带序与OH(A^2∑→X^2Ⅱ0—0)的重叠发射光谱中准确求出OH(A^2∑→X^2Ⅱ0—0)自由基的发射光谱强度。由发射光谱强度得到了激发态OH(A^3∑)自由基和O(3p^5P),Ha(3P)活性原子的布居。还研究了激发态OH(A^2∑)自由基和O(3p^5P),Ha(3P)活性原子的布居随放电电压和放电频率的变化以及氧气对激发态OH(A^2∑)自由基和O(3p^5P),Ha(3P)活性原子布居的影响。  相似文献   

17.
在较低气压(4Torr)条件下采用直流辉光放电激发氮分子气体,得到了氮分子放电等离子体在320~470nm范围内的发射谱,其形状为一等间隔的谱线序列,并沿长波方向谱线强度逐渐变小。通过计算分析对谱线进行了标定,确定该组谱线是由处于C^3Πg激发态低振动能级的氮分子向B^3Πg态不同振动能级的辐射跃迁所产生;在此基础上计算出氮分子B^3Πg态的振动频率为1738.50cm^-1。结合相关的能级参数计算了C^3Πg(v=0)→B^3Πg(v″=0~5)之间的Frank-Condon跃迁因子,实验所得的谱线强度与之符合得很好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号