首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

TRASE (Transmit Array Spatial Encoding) MRI uses RF transmit phase gradients instead of B0 field gradients for k-space traversal and high-resolution MR image formation. Transmit coil performance is a key determinant of TRASE image quality. The purpose of this work is to design an optimized RF transmit phase gradient array for spatial encoding in a transverse direction (x- or y- axis) for a 0.2 T vertical B0 field MRI system, using a single transmitter channel. This requires the generation of two transmit B1 RF fields with uniform amplitude and positive and negative linear phase gradients respectively over the imaging volume.

Materials and Methods

A two-element array consisting of a double Maxwell-type coil and a Helmholtz-type coil was designed using 3D field simulations. The phase gradient polarity is set by the relative phase of the RF signals driving the simultaneously energized elements.

Results

Field mapping and 1D TRASE imaging experiments confirmed that the constructed coil produced the fields and operated as designed. A substantially larger imaging volume relative to that obtainable from a non-optimized Maxwell-Helmholtz design was achieved.

Conclusion

The Maxwell (sine)–Helmholtz (cosine) approach has proven successful for a horizontal phase gradient coil. A similar approach may be useful for other phase-gradient coil designs.  相似文献   

2.

Purpose

Greater spatial resolution in intracranial three-dimensional time-of-flight (TOF) magnetic resonance angiography (MRA) is possible at higher field strengths, due to the increased contrast-to-noise ratio (CNR) from the higher signal-to-noise ratio and the improved background suppression. However, at very high fields, spatial resolution is limited in practice by the acquisition time required for sequential phase encoding. In this study, we applied parallel imaging to 7T TOF MRA studies of normal volunteers and patients with vascular disease, in order to obtain very high resolution (0.12 mm3) images within a reasonable scan time.

Materials and Methods

Custom parallel imaging acquisition and reconstruction methods were developed for 7T MRA, based on generalized autocalibrating partially parallel acquisition (GRAPPA). The techniques were compared and applied to studies of seven normal volunteers and three patients with cerebrovascular disease.

Results

The technique produced high resolution studies free from discernible reconstruction artifacts in all subjects and provided excellent depiction of vascular pathology in patients.

Conclusions

7T TOF MRA with parallel imaging is a valuable noninvasive angiographic technique that can attain very high spatial resolution.  相似文献   

3.

Aim

The influences on the signal-to-noise ratio (SNR) of Displacement ENcoding with Stimulated Echoes (DENSE) MRI of field strength, receiver coil sensitivity and choice of flip angle strategy have been previously investigated individually. In this study, all of these parameters have been investigated in the same setting, and a mutual comparison of their impact on SNR is presented.

Materials and methods

Ten healthy volunteers were imaged in a 1.5 T and a 3 T MRI system, using standard five- or six-channel cardiac coils as well as 32-channel coils, with four different excitation patterns. Variation of spatial coil sensitivity was assessed by regional SNR analysis.

Results

SNR ranging from 2.8 to 30.5 was found depending on the combination of excitation patterns, coil sensitivity and field strength. The SNR at 3 T was 53±26% higher than at 1.5 T (P<.001), whereas spatial differences of 59±26% were found in the ventricle (P<.001). Thirty-two-channel coils provided 52±29% higher SNR compared to standard five- or six-channel coils (P<.001). A fixed flip angle strategy provided an excess of 50% higher SNR in half of the imaged cardiac cycle compared to a sweeping flip angle strategy, and a single-phase acquisition provided a sixfold increase of SNR compared to a cine acquisition.

Conclusion

The effect of field strength and receiver coil sensitivity influences the SNR with the same order of magnitude, whereas flip angle strategy can have a larger effect on SNR. Thus, careful choice of imaging hardware in combination with adaptation of the acquisition protocol is crucial in order to realize sufficient SNR in DENSE MRI.  相似文献   

4.

Purpose

To investigate an effective time-resolved variable-density random undersampling scheme combined with an efficient parallel image reconstruction method for highly accelerated aortic 4D flow MR imaging with high reconstruction accuracy.

Materials and Methods

Variable-density Poisson-disk sampling (vPDS) was applied in both the phase-slice encoding plane and the temporal domain to accelerate the time-resolved 3D Cartesian acquisition of flow imaging. In order to generate an improved initial solution for the iterative self-consistent parallel imaging method (SPIRiT), a sample-selective view sharing reconstruction for time-resolved random undersampling (STIRRUP) was introduced. The performance of different undersampling and image reconstruction schemes were evaluated by retrospectively applying those to fully sampled data sets obtained from three healthy subjects and a flow phantom.

Results

Undersampling pattern based on the combination of time-resolved vPDS, the temporal sharing scheme STIRRUP, and parallel imaging SPIRiT, were able to achieve 6-fold accelerated 4D flow MRI with high accuracy using a small number of coils (N = 5). The normalized root mean square error between aorta flow waveforms obtained with the acceleration method and the fully sampled data in three healthy subjects was 0.04 ± 0.02, and the difference in peak-systolic mean velocity was − 0.29 ± 2.56 cm/s.

Conclusion

Qualitative and quantitative evaluation of our preliminary results demonstrate that time-resolved variable-density random sampling is efficient for highly accelerating 4D flow imaging while maintaining image reconstruction accuracy.  相似文献   

5.

Purpose

To present preliminary, in vivo temperature measurements during MRI of a pig implanted with a deep brain stimulation (DBS) system.

Materials and Methods

DBS system (Medtronic Inc., Minneapolis, MN) was implanted in the brain of an anesthetized pig. 3.0-T MRI was performed with a T/R head coil using the low-SAR GRE EPI and IR-prepped GRE sequences (SAR: 0.42 and 0.39 W/kg, respectively), and the high-SAR 4-echo RF spin echo (SAR: 2.9 W/kg). Fluoroptic thermometry was used to directly measure RF-related heating at the DBS electrodes, and at the implantable pulse generator (IPG). For reference the measurements were repeated in the same pig at 1.5 T and, at both field strengths, in a phantom.

Results

At 3.0 T, the maximal temperature elevations at DBS electrodes were 0.46 °C and 2.3 °C, for the low- and high-SAR sequences, respectively. No heating was observed on the implanted IPG during any of the measurements. Measurements of in vivo heating differed from those obtained in the phantom.

Conclusion

The 3.0-T MRI using GRE EPI and IR-prepped GRE sequences resulted in local temperature elevations at DBS electrodes of no more than 0.46 °C. Although no extrapolation should be made to human exams and much further study will be needed, these preliminary data are encouraging for the future use 3.0-T MRI in patients with DBS.  相似文献   

6.

Purpose

To investigate the influence of dual-source parallel radiofrequency (RF) excitation on clinical breast MR images.

Methods

A 3 T MR system with both dual-source and conventional single-source RF excitations was used to examine 22 patients. Axial TSE-T2WI with fat suppression, TSE-T1WI without fat suppression, THRIVE (3D field echo) and DWI (SE-EPI) were obtained by using both excitation techniques. Image homogeneity, image contrast and lesion conspicuity were measured or independently scored by two radiologists and were compared by paired-sample t test or Wilcoxon test.

Results

Both excitations revealed 24 lesions. For SE sequences using dual-source mode, image homogeneity was improved (P = 0.00), scan time was reduced, and ghost artifacts on DWI were significantly reduced (P = 0.00). However, image contrast was not increased and lesion conspicuity had no significant difference between two modes, except DWI on which lesion conspicuity was significantly improved (P = 0.00), due to less ghost artifacts. For field-echo sequence, image homogeneity, acquisition time, image contrast and lesion conspicuity had no significant difference between the two modes.

Conclusions

Dual-source parallel RF transmission has some added value for improving breast image quality. However, its value is limited in terms of improving lesion detection and characterization.  相似文献   

7.
The layout of radio-frequency received coils is related to signal-to-noise ratio (SNR) in magnetic resonance imaging (MRI). In this paper, different structures of four-channel received coil arrays for vertical-field MRI are constructed and optimized by establishing the relationship between coil geometry and SNR to achieve a high SNR and a uniform SNR distribution in the region of interest (ROI). Then, the SNR distributions of three optimized configurations, including rectangular loops, non-definite shape surface coils, and solenoid loops as the main unit, are simulated and compared. The four-channel coil of solenoid loops as the main unit has been found to have the best performance with the highest mean SNR in the ROI when imaging without acceleration. In addition, g-factor and 2D SENSE SNR in yoz-plane are simply analyzed, which show a sharp decrease in SNR for all the coils. Finally, all the coils are manufactured and operated at a 0.5 T permanent magnet MRI system with phantom and joint imaging experiments. Using pixel-by-pixel manner to evaluate SNR map, the experimental results are consistent with the simulation results, while parallel imaging experiment results show that the major consideration in low field MRI is the improvement of SNR value and uniformity rather than that of the imaging speed. As different constructions of four-channel received coils are investigated, we have found the most effective configuration with high and uniform SNR for vertical-field MRI.  相似文献   

8.

Background

Due to limited SNR the cerebral applications of the intravoxel incoherent motion (IVIM) concept have been sparse. MRI hardware developments have resulted in improved SNR and this may justify a reassessment of IVIM imaging for non-invasive quantification of the cerebral blood volume (CBV) as a first step toward determining the optimal field strength.

Purpose

To investigate intravoxel incoherent motion imaging for its potential to assess cerebral blood volume (CBV) at three different MRI field strengths.

Materials and methods

Four volunteers were scanned twice at 1.5 T, 3 T as well as 7 T. By correcting for field-strength-dependent effects of relaxation, estimates of corrected CBV (cCBV) were obtained in deep gray matter (DGM), frontal gray matter (FGM) and frontal white matter (FWM), using Bayesian analysis. In addition, simulations were performed to facilitate the interpretation of experimental data.

Results

In DGM, FGM and FWM we obtained cCBV estimates of 2.2 ml/100 ml, 2.7 ml/100 ml, 1.4 ml/100 ml at 1.5 T; 3.7 ml/100 ml, 5.0 ml/100 ml, 3.2 ml/100 ml at 3 T and 15.5 ml/100 ml, 20.3 ml/100 ml, 7.0 ml/100 ml at 7 T.

Conclusion

Quantitative cCBV values obtained at 1.5 T and 3 T corresponded better to physiological reference values, while 7 T showed the largest deviation from expected values. Simulations of synthetic tissue voxels indicated that the discrepancy at 7 T can partly be explained by SNR issues. Results were generally more repeatable at 7 T (intraclass correlation coefficient, ICC = 0.84) than at 1.5 T (ICC = 0.68) and 3 T (ICC = 0.46).  相似文献   

9.

Purpose

The purpose was to evaluate radiofrequency (RF)-related heating of commonly used extracranial neurosurgical implants in 7-T magnetic resonance imaging (MRI).

Materials and methods

Experiments were performed using a 7-T MR system equipped with a transmit/receive RF head coil. Four commonly used titanium neurosurgical implants were studied using a test procedure adapted from the American Society for Testing and Materials Standard F2182-11a. Implants (n = 4) were tested with an MRI turbo spin echo pulse sequence designed to achieve maximum RF exposure [specific absorption rate (SAR) level = 9.9 W/kg], which was further validated by performing calorimetry. Maximum temperature increases near each implant's surface were measured using fiberoptic temperature probes in a gelled-saline-filled phantom that mimicked the conductive properties of soft tissue. Measurement results were compared to literature data for patient safety.

Results

The highest achievable phantom averaged SAR was determined by calorimetry to be 2.0 ± 0.1 W/kg due to the highly conservative SAR estimation model used by this 7-T MR system. The maximum temperature increase at this SAR level was below 1.0 °C for all extracranial neurosurgical implants that underwent testing.

Conclusion

The findings indicated that RF-related heating under the conditions used in this investigation is not a significant safety concern for patients with the particular extracranial neurosurgical implants evaluated in this study.  相似文献   

10.

Purpose

To develop a method for estimating metabolite concentrations using phased-array coils and sensitivity-encoded (SENSE) magnetic resonance spectroscopic images (MRSI) of the human brain.

Materials and Methods

The method is based on the phantom replacement technique and uses receive coil sensitivity maps and body-coil loading factors to account for receive B1 inhomogeneity and variable coil loading, respectively. Corrections for cerebrospinal fluid content from the MRSI voxel were also applied, and the total protocol scan time was less than 15 min. The method was applied to 10 normal human volunteers using a multislice 2D-MRSI sequence at 3 T, and seven different brain regions were quantified.

Results

N-Acetyl aspartate (NAA) concentrations varied from 9.7 to 14.7 mM, creatine (Cr) varied from 6.6 to 10.6 mM and choline (Cho) varied from 1.6 to 3.0 mM, in good general agreement with prior literature values.

Conclusions

Quantitative SENSE-MRSI of the human brain is routinely possible using an adapted phantom-replacement technique. The method may also be applied to other MRSI techniques, including conventional phase encoding, with phased-array receiver coils, provided that coil sensitivity profiles can be measured.  相似文献   

11.

Objectives

The purpose of this study was to (a) investigate the image quality of phase-sensitive dual-inversion recovery (PS-DIR) coronary wall imaging in healthy subjects and in subjects with known coronary artery disease (CAD) and to (b) investigate the utilization of PS-DIR at 3 T in the assessment of coronary artery thickening in subjects with asymptomatic but variable degrees of CAD.

Materials and Methods

A total of 37 subjects participated in this institutional review board-approved and HIPAA-compliant study. These included 21 subjects with known CAD as identified on multidetector computed tomography angiography (MDCT). Sixteen healthy subjects without known history of CAD were included. All subjects were scanned using free-breathing PS-DIR magnetic resonance imaging (MRI) for the assessment of coronary wall thickness at 3 T. Lumen–tissue contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR) and quantitative vessel parameters including lumen area and wall thickness were measured. Statistical analyses were performed.

Results

PS-DIR was successfully completed in 76% of patients and in 88% of the healthy subjects. Phase-sensitive signed-magnitude reconstruction, compared to modulus-magnitude images, significantly improved lumen–tissue CNR in healthy subjects (26.73 ± 11.95 vs. 14.65 ± 9.57, P < .001) and in patients (21.45 ± 7.61 vs. 16.65 ± 5.85, P < .001). There was no difference in image CNR and SNR between groups. In arterial segments free of plaques, coronary wall was thicker in patients in comparison to healthy subjects (1.74 ± 0.27 mm vs. 1.17 ± 0.14 mm, P < .001), without a change in lumen area (4.51 ± 2.42 mm2 vs. 5.71 ± 3.11 mm2, P = .25).

Conclusions

This is the first study to demonstrate the feasibility of successfully obtaining vessel wall images at 3 T using PS-DIR in asymptomatic patients with known variable degrees of CAD as detected by MDCT. This was achieved with a fixed subject-invariant planning of blood signal nulling. With that limitation alleviated, PS-DIR coronary wall MRI is capable of detecting arterial thickening and positive arterial remodeling at 3 T in asymptomatic CAD.  相似文献   

12.
The purpose of this study was to analyse the relationship between the radio frequency (RF) coil performance and conductor surface shape for ultra-high field (UHF) magnetic resonance imaging. Twelve different leg-shaped quadrature birdcage coils were modeled and built, e.g., 4 mm-width-leg conventional birdcage coil, 7 mm-width-leg conventional birdcage, 10 mm-width-leg conventional birdcage coil, 13 mm-width-leg conventional birdcage coil, inside arc-shape-leg birdcage coil, outward arc-shape-leg birdcage coil, inside right angle-shape-leg birdcage coil, outward right angle-shape-leg birdcage coil, vertical 4 mm-width-leg vertical birdcage, 6 mm-width-leg vertical birdcage, 8 mm-width-leg vertical birdcage and 10 mm-width-leg vertical birdcage. Studies were carried out in both electromagnetic simulations with finite element method as well as in vitro saline phantom experiments at 9.4 T. Both the results of simulation and experiment showed that conventional birdcage coil produces the highest signal-to-noise ratio (SNR) while the vertical birdcage coil produces the most homogeneous RF magnetic (B 1) field at UHF. For conventional birdcage coils, as well as the vertical birdcage coils, only the proper width of legs results in the best performance (e.g., B 1 homogeneous and SNR). For vertical birdcage coils, the wider the leg size, the higher RF magnetic (B 1) field intensity distribution.  相似文献   

13.

Background

The goal of the study was to assess a T2*-weighted MRI sequence for the ability to identify hepatocellular carcinoma (HCC).

Methods

Hepatic iron deposition, which is common in chronic liver disease (CLD), may increase the conspicuity of HCC on GRE imaging due to increased T2* signal decay in liver parenchyma. In this study, a breath-hold T2*-weighted MRI sequence was evaluated by a blinded observer for HCC and the results compared to a reference standard of gadolinium-enhanced MRI in these same patients. Forty-one patients (mean age 56.2 years; 17 females) were included in this approved, retrospective study.

Results

By the reference standard, 14 of 41 patients had a total of 25 HCCs. The sensitivity of the T2*-weighted MR sequence for identifying HCC, per lesion, was 60%, while the specificity was 100%. There was a significantly lower T2* value of liver parenchyma in patients with HCC identified by the T2*-weighted sequence than in those with HCCs which were not identified by the T2*-weighted sequence (27.8±2.2 vs. 21.9±2.1 ms; P=.02).

Conclusions

A T2*-weighted MRI sequence can identify HCC in patients with CLD. This technique may be beneficial for imaging of patients contraindicated for gadolinium.  相似文献   

14.

Objectives

To establish the value of MRI in targeting re-biopsy for undiagnosed prostate cancer despite multiple negative biopsies and determine clinical relevance of detected tumors.

Materials and Methods

Thirty-eight patients who underwent MRI after 2 or more negative biopsies due to continued clinical suspicion and later underwent TRUS-guided biopsy supplemented by biopsy of suspicious areas depicted by MRI were identified. Diagnostic performance of endorectal 3T MRI in diagnosing missed cancer foci was assessed using biopsy results as the standard of reference. Ratio of positive biopsies using systematic versus MRI-prompted approaches was compared. Gleason scores of detected cancers were used as surrogate for clinical relevance.

Results

Thirty-four percent of patients who underwent MRI before re-biopsy had prostate cancer on subsequent biopsy. The positive biopsy yield with systematic sampling was 23% versus 92% with MRI-prompted biopsies(p < 0.0001). Seventy-seven percent of tumors were detected exclusively in the MRI-prompted zones. Sensitivity, specificity, positive predictive value, negative predictive value and accuracy of MRI to provide a positive biopsy were 92%, 60%, 55%, 94% and 71%, respectively. The anterior gland and apical regions contained most tumors; 75% of cancers detected by MRI-prompted biopsy had Gleason score ≥ 7.

Conclusions

Clinically relevant tumors missed by multiple TRUS-guided biopsies can be detected by a MRI-prompted approach.  相似文献   

15.
Copper foil has been widely employed in conventional radio frequency (RF) birdcage coils for magnetic resonance imaging (MRI). However, for ultrahigh-field (UHF) MRI, current density distribution on the copper foil is concentrated on the surface and the edge due to proximity effect. This increases the effective resistance and distorts the circumferential sinusoidal current distribution on the birdcage coils, resulting in low signal-to-noise ratio (SNR) and inhomogeneous distribution of RF magnetic (B1) field. In this context, multiple parallel round wires were proposed as legs of a birdcage coil to optimize current density distribution and to improve the SNR and the B1 field homogeneity. The design was compared with three conventional birdcage coils with different width flat strip surface legs for a 9.4 T (T) MRI system, e.g., narrow-leg birdcage coil (NL), medium-leg birdcage coil (ML), broad-leg birdcage coil (BL) and the multiple parallel round wire-leg birdcage coil (WL). Studies were carried out in in vitro saline phantom as well as in vivo mouse brain. WL showed higher coil quality factor Q and more homogeneous B1 field distribution compared to the other three conventional birdcage coils. Furthermore, WL showed 12, 10 and 13% SNR increase, respectively, compared to NL, ML and BL. It was proposed that conductor’s shape optimization could be an effective approach to improve RF coil performance for UHF MRI.  相似文献   

16.

Purpose

To remove the partial volume averaging effect of free water in MR diffusion imaging of neural tissues by use of the fluid attenuated inversion recovery (FLAIR) without the penalty of an extended scan time.

Materials and methods

The magnetic resonance images were obtained from a normal volunteer in a coronal slice orientation at 3 T with the 20-channel rf coil. In diffusion imaging only the b0 images were obtained with the FLAIR contrast while the diffusion weighted images were obtained without the FLAIR contrast. A composition of FLAIR b0 and non-FLAIR diffusion weighted images was used in calculating the diffusion tensor and fractional anisotropy after compensating the reduced signal amplitude due to the inversion recovery in the FLAIR b0 images. The fractional anisotropy of the non-FLAIR, FLAIR, and the composite methods were analyzed for the mean and histogram in the corpus callosum, cervical spine, and the fornix tracts.

Results

The partial volume averaging effect was observed in the corpus callosum, the cervical spine, and the fornix tracts in the non-FLAIR b0 and diffusion images. The partial volume averaging effect was removed in the FLAIR diffusion images which took more than twice the scan time than the non-FLAIR diffusion imaging. The proposed composite FLAIR diffusion imaging removed the partial volume averaging effect as in the FLAIR diffusion imaging. The distribution of the FA histogram was very different between the non-FLAIR and FLAIR diffusion images, while it was very similar between the FLAIR and the composite FLAIR after correcting the white matter signal in the FLAIR b0 images.

Conclusions

The proposed composite FLAIR diffusion imaging method was equally effective in removing the partial volume averaging effect as the FLAIR diffusion imaging at a limited increase of the scan time since only a small number of b0 images needed to be obtained with the FLAIR contrast.  相似文献   

17.

Purpose

To compare the diagnostic performance of the noncontrast MRI including DWI to the standard MRI for detecting hepatic malignancies in patients with chronic liver disease.

Materials and methods

We included 135 patients with 136 histologically-confirmed hepatocellular carcinomas (HCCs), 12 cholangiocarcinomas, and 34 benign lesions (≤ 2.0 cm), and 22 patients with cirrhosis but no focal liver lesion who underwent 3.0 T liver MRI. Noncontrast MRI set (T1- and T2-weighted images and DWI) and standard MRI set (gadoxetic acid-enhanced and noncontrast MRI) were analyzed independently by three observers to detect liver malignancies using receiver operating characteristic analysis.

Results

The Az value of the noncontrast MRI (mean, 0.906) was not inferior to that of the combined MRI (mean, 0.924) for detecting malignancies by all observers (P > 0.05). For each observer, no significant difference was found in the sensitivity and specificity between the two MRI sets for detecting liver malignancies and distinguishing them from benign lesions (P > 0.05), whereas negative predictive value was higher with the combined MRI than with the noncontrast MRI (P = 0.0001). When using pooled data, the sensitivity of the combined MRI (mean 94.8%) was higher than that of the noncontrast MRI (mean, 91.7%) (P = 0.001), whereas specificity was equivalent (78.6% vs 77.5%).

Conclusion

Noncontrast MRI including DWI showed reasonable performance compared to the combined gadoxetic acid-enhanced and noncontrast MRI set for detecting HCC and cholangiocarcinoma and differentiating them from benign lesions in patients with chronic liver disease.  相似文献   

18.

Purpose

To investigate whether image quality can be improved using liquid perfluorocarbon pads (Sat Pad) and clarify the optimal fat-suppression method among chemical shift selective (CHESS), water excitation (WEX), and short TI inversion recovery (STIR) methods in diffusion-weighted imaging (DWI) of the head and neck using 3-T magnetic resonance imaging. Correlations between results of visual inspection and quantitative analysis were also examined.

Material and Methods

This study was approved by our Institutional Review Board and informed consent was waived. DWI was performed on 25 subjects with/without Sat Pad and using three fat-suppression methods (6 patterns). Image quality was evaluated visually (4-point scales and lesion-depiction capability) and by quantitative analysis (signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR)). Two-way repeated-measures analysis of variance (ANOVA) was used to detect significant differences in scores of visual evaluation, SNR, and CNR.

Results

Mean visual evaluation scores were significantly higher with Sat Pad using STIR than without Sat Pad for all fat-suppression methods (P < 0.05). DWI with Sat Pad using STIR tended to be useful for depicting lesions. DWI using STIR showed reduced W-SNR (W: whole area of depicted structure) and CNR (between semispinalis capitis muscle and subcutaneous fat) due to fewer artifacts and uniform fat suppression.

Conclusion

Combining Sat Pad with STIR provides good image quality for visual inspections. When numerous artifacts are present and fat suppression is insufficient, higher SNR and CNR do not always provide good diagnostic image quality.  相似文献   

19.

Background and Purpose

Fine-mesh braided, stent-like structures (flow diverters) have been proposed for treatment of brain aneurysms. To date, the safety of performing magnetic resonance imaging (MRI) in patients with these implants is unknown. Therefore, the purpose of this study was to evaluate MRI issues at 3-T for a new flow-diverting implant used to treat brain aneurysms.

Methods

The Surpass NeuroEndoGraft (Surpass Medical, Ltd., Tel Aviv, Israel) underwent evaluation for magnetic field interactions, MRI-related heating and artifacts using standardized techniques. Magnetic field interactions were assessed for this implant with regard to translational attraction (i.e., using the deflection angle technique) and torque (qualitative assessment method). MRI-related heating was evaluated by placing the implant in a gelled-saline-filled, head/torso phantom and performing MRI using a transmit/receive radiofrequency body coil at a whole-body-averaged specific absorption rate of 2.9 W/kg for 15 min. Artifacts were characterized using T1-weighted, spin echo (SE) and gradient echo (GRE) pulse sequences.

Results

The Surpass NeuroEndoGraft exhibited minor magnetic field interactions (21° deflection angle and no torque), which were acceptable from a safety consideration. Heating was not substantial, with the highest temperature change being 2.3°C (background temperature rise without the implant was 1.5°C). Artifacts may create issues if the area of interest is in the same area or close to this implant.

Conclusions

The findings demonstrated that it would be acceptable for patients with this next-generation, flow-diverting implant to undergo MRI at 3-T or less.  相似文献   

20.

Purpose

Quantitative imaging of the rat skin was performed using magnetic resonance imaging (MRI) at 900 MHz.

Materials and methods

A number of imaging techniques utilized for multiple contrast included magnetization transfer contrast, spin-lattice relaxation constant (T1-weighting), combination of T2-weighting with magnetic field inhomogeneity (T2*-weighting), magnetization transfer weighting and diffusion tensor weighting. These were used to obtain 2D slices and 3D multislice-multiecho images with high magnetic resonance contrast. These 2D and 3D imaging techniques were combined to achieve high-resolution MRI.

Results

Oil–water phantom showed distinct fat-water contrast. The dermis and epidermis, including the stratum corneum remnants, of nude rat skin were distinct due to their proton magnetic resonance as a result of proton interactions with the skin interstitial tissue. Combined details obtained from high-resolution, high-quality ex vivo skin images with different multicontrast characteristics generated better differentiation of skin layers, sublayers and significant correlation (r2=0.4927 for MRI area, r2=0.3068 for histology area; P<.0148) of MR data with co-registered histological areas of the epidermis as well as the hair follicle.

Conclusion

The multiple contrast approach provided a noninvasive ex vivo MRI visualization with semi-quantitative assessment of the major skin structures including the stratum corneum remnants, epidermis, hair, papillary dermis, reticular dermis and hypodermis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号