首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of polymer nanocomposites containing CuS clusters is studied by atom force (AFM), scanning (SEM), and transmission (TEM) electron microscopy, and by narrow-angle X-ray scattering (SAXS). The results point to the existence of spherical nanoparticles of 3?C50 nm in diameter and larger agglomerates of sizes 1?C5 ??m in the studied nanocomposites (NCs). The morphology of NCs depends on the conditions of synthesis.  相似文献   

2.
Different methods for characterizing the morphology of multiphase blends were applied to a blend of thermoplastic polyurethane with 20 wt% polypropylene as the dispersed phase. Optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), and light scattering were compared. The microscopy methods were evaluated with respect to their suitability for quantitative image analysis for determination of the particle size distribution. Comparison of the particle size distributions revealed that the dependence of the measured particle size on the method of preparation and technique was not very pronounced. The main difference resulted from cutting the particles outside their maximum diameter. The measured particle sizes determined with methods that analyze the whole particles, such as SEM on separated particles and laser light scattering, are larger than those measured on cut specimens. The factor 4/π valid in monodisperse systems for the ratio between the real particle size and that measured on sections was found also to be applicable to this polydisperse blend system. Although light micros-copy requires the least preparation efforts, it is a reliable method for this blend system.  相似文献   

3.
Single-crystal Au nanosheets and fcc gold nanocrystals of uniform size were synthesized by a novel and simple route. The results of field-emission scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) indicated the formation of the single-crystal structure of gold nanosheets and fcc nanocrystals. Energy-dispersive analysis of X-ray (EDAX) showed absorbance of cetyltrimethylammonium bromide (CTAB) molecules onto the surface of gold nanostructures. Moreover, zeta potential measurements showed that CTAB-coated nanostructures were positively charged and the zeta potential remained almost the same upon centrifugation and redispersion of the resulting nanostructures in methanol, confirming the high stability of the surfactant-protected nanocomposites. Evolution of the nanostructures during the reaction was monitored by TEM observations. The results indicated that the formation of the gold nanostructures followed a two-step mechanism with a bilayer CTAB structure on the surface of the gold nanostructures.  相似文献   

4.
TiN, NbN, and TaN nanocrystals have been selectively prepared through a simple, solvent-free, and convenient reaction under autogenic pressure at moderate temperature (RAPET) process at 350 °C for 12 h, reacting transition metal chlorides and sodium azide. The nanostructures obtained are characterized by powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). A reaction mechanism is suggested based on the experimental results. These rapid reactions produce nanocrystals of TiN, NbN, and TaN with average sizes of approximately 30, 28, and 27 nm, respectively (as calculated from X-ray line broadening). An octahedral inorganic fullerene was detected among the various structures of the TiN.  相似文献   

5.
赵娟  胡慧芳  曾亚萍  程彩萍 《物理学报》2013,62(15):158104-158104
本实验以氯化铜 (CuCl2·2H2O) 和二硫化碳(CS2)为原料, 以乙二醇(C2H6O2) 为溶剂, 通过溶剂热法成功制备了具有可见光活性的花状硫化铜(CuS) 级次纳米结构. 并利用X射线粉末衍射技术(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM) 等技术对其进行了表征, 利用紫外可见吸收光谱(Uv-vis)分析了其光学性能, 并以甲基橙为目标降解物对其可见光催化活性进行了研究. 结果表明: 花状CuS级次纳米结构具有很高的可见光催化活性, 与体相CuS粉末相比有很大的提高, 在自然光照射下对甲基橙的降解率可以达到100%. 同时本文对花状级次纳米结构的形成机理进行了分析. 关键词: 硫化铜 溶剂热 级次纳米结构 光催化  相似文献   

6.
Large-scale synthesis of copper sulfide (CuS) nanotubes with uniform size could be achieved via a facile hydrothermal method. The whole process could be adjusted to prepare CuS with different nanostructures by simply changing the concentration of NaOH or reaction temperature while keeping other conditions unchanged. X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Photoluminescence (PL) spectroscopy were used to characterize the products. The as-prepared CuS nanotubes showed good photocatalytic activity of degrading eosin Y under UV-vis light irradiation, which indicated the potential application of the CuS nanotubes in eliminating pollution and environmental protection.  相似文献   

7.
In this study, the effect of ultrasonic treatment duration on the morphology of self-assembled casein particles was investigated by atomic force microscopy (AFM), low vacuum scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In the case of AFM images, the particle analysis which was carried out by the SPIP program showed that the self-assembled casein particles after being ultrasonically treated for 2 min got smaller in size compared to the casein particles that have not been exposed to any ultrasonic treatment. Surprisingly, however, increasing the ultrasonic time exposure of the particles resulted in an opposite effect where larger particles or aggregates seemed to be present. We show that by comparing the results obtained by AFM, SEM and TEM, the information extracted from the AFM images and analyzed by SPIP program give more detailed insights into particle sizes and morphology at the molecular level compared to SEM and TEM images, respectively.  相似文献   

8.
This paper reports a modified galvanic displacement approach for the synthesis of Ag nanostructures with different morphologies. During the process, AgNO3 as starting material is reduced using zinc foil and this is followed by suitable thermal treatment. The reaction time, concentration of the AgNO3 aqueous solutions and thermal treatment temperature directly influence the morphologies of Ag nanostructures. X-ray diffraction (XRD), field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and UV–visible spectra are used to characterize the products obtained. Furthermore, a representative experiment using rhodamine (R6G) as the probe molecule confirms that the Ag nanostructure shows strong surface-enhanced Raman scattering (SERS) activity.  相似文献   

9.
Morphological characteristics and electronic structures of platinum-containing nanosystems obtained during a redox reaction in water medium at different concentrations of a stabilizing polymer and platinum were studied by atomic-force microscopy (AFM), X-ray photoelectron spectroscopy, and dynamic light scattering. It was shown that individual and associated structures of different morphologies were formed on the silicon substrate surface. Comparison of the dimension characteristics of nanoclusters in the Pt nanoparticle-polymer systems (in solution by means of molecular optics, on the silicon substrate surface in air by means of AFM) for ionogenic and nonionogenic polymer matrices upon the change of the mass ratio ν has shown that the nanocluster sizes in solution are two to three times larger than those in a thin film formed on the substrate surface. The size dependences of the nanoclusters on ν obtained by these methods exhibit the same character.  相似文献   

10.
We have reported new magnetic and optical properties of Mn2O3 nanostructures.The nanostructures have been synthesized by the hydrothermal method combined with the adjustment of pH values in the reaction system.The particular characteristics of the nanostructures have been analyzed by employing X-Ray diffraction(XRD),scanning electron microscopy(SEM),energy dispersive X-ray(EDX) analysis,transmission electron microscopy(TEM),high resolution transmission electron microscopy(HRTEM),Raman spectroscopy(RS),UV-visible spectroscopy,and the vibrating sample magnetometer(VSM).Structural investigation manifests that the synthesized Mn2O3 nanostructures are orthorhombic crystal.Magnetic investigation indicates that the Mn2O3 nanostructures are antiferromagnetic and the antiferromagnetic transition temperature is at TN=83 K.Furthermore,the Mn2O3 nanostructures possess canted antiferromagnetic order below the Neel temperature due to spin frustration,resulting in hysteresis with large coercivity(1580 Oe) and remnant magnetization(1.52 emu/g).The UV-visible spectrophotometry was used to determine the transmittance behaviour of Mn2O3 nanostructures.A direct optical band gap of 1.2 eV was acquired by using the Davis-Mott model.The UV-visible spectrum indicates that the absorption is prominent in the visible region,and transparency is more than 80% in the UV region.  相似文献   

11.
Mercury selenide (HgSe) nanostructures were synthesized via a sonochemical method based on the reaction between HgCl(2), SeCl(4) and hydrazine hydrate (N(2)H(4)·H(2)O) in water, in presence of various capping agents. The effects of preparation parameters such as: the kind of capping agent and its amount, ultrasonic power, reaction time and temperature were investigated. It was found that morphology, particle size and phase of the products could be greatly affected by these parameters. HgSe nanostructures were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), photoluminescence spectroscopy (PL) and X-ray energy dispersive spectroscopy (EDS).  相似文献   

12.
This communication discusses the formation of doped nanobelts produced by a simple route. Tin-doped indium oxide (ITO) nanobelts were obtained by a carbothermal reduction method. The nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX) and wavelength-dispersive X-ray spectroscopy (WDX). The results show that the nanobelts have a cubic structure, are single crystalline and doped with tin and grow in the [400] direction. PACS 81.07.-b; 61.46.+w; 68.37.Hk; 68.37.Lp  相似文献   

13.
Cellulose nanocrystals (CNCs) have high aspect ratios, polydisperse size distributions, and a strong propensity for aggregation, all of which make them a challenging material for detailed size and morphology characterization. A CNC reference material produced by sulfuric acid hydrolysis of softwood pulp was characterized using a combination of dynamic light scattering (DLS), atomic force microscopy (AFM), transmission electron microscopy, and X-ray diffraction. As a starting point, a dispersion protocol using ultrasonication was developed to provide CNC suspensions with reproducible size distributions as assessed by DLS. Tests of various methods for AFM sample preparation demonstrated that spin coating on a positively charged substrate maximizes the number of individual particles for size analysis, while minimizing the presence of agglomerates. The effects of sample-to-sample variability, analyst bias, and sonication on size distributions were assessed by AFM. The latter experiment indicated that dispersion of agglomerates by sonication did not significantly change the size distribution of individual CNCs in suspension. Comparison with TEM data demonstrated that the two microscopy methods provide similar results for CNC length (mean ~?80 nm); however, the particle width as measured by TEM is approximately twice that of the CNC height (mean 3.5 nm) measured by AFM. The individual crystallite size measured by X-ray diffraction is intermediate between the two values, although closer to the AFM height, possibly indicating that laterally agglomerated CNCs contribute to the TEM width. Overall, this study provides detailed information that can be used to assess the factors that must be considered in measuring CNC size distributions, information that will be useful for benchmarking the performance of different industrially sourced materials.  相似文献   

14.
Superparamagnetic magnetite microspheres with a hydrophobic surface were successfully prepared through a simple solvothermal method based on hydrolysis of iron-oleate complex in diphenyl ether in the presence of oleic acid as the ligands. The microspheres size and size distribution were analyzed by a laser diffraction particle size analyzing method using ZETASIZER. The morphology and crystalline structure of the products were characterized using transmitting electron microscopy (TEM), scanning electron microscopy (SEM), X-Ray diffraction (XRD), and the magnetic property was studied by a Quantum Design MPMS SQUID. TEM and SEM images showed that as-prepared spherical nanostructures are of about 140 nm in sizes, which self-assembled by many 10 nm primary magnetic nanoparticles. The XRD analysis revealed that the magnetic microspheres are composed of magnetite. The magnetic measurements demonstrated that the spherical nanostructures are superparamagnetic at room temperature with no magnetic remanence and coercive force. In addition, the microspheres can be well dispersed in various non-polar solvents due to their surfaces capped of hydrophobic surfactants in situ.  相似文献   

15.
Single crystalline GaN nanoribbons were synthesized through nitriding Ga2O3 thin films deposited on sapphire (0001) substrates by radio frequency magnetron sputtering. The component and structure of nanoribbons were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The flat and smooth ribbon-like nanostructures are high quality single crystalline hexagonal wurtzite GaN. The thickness and width-to-thickness ratio of the grown GaN nanoribbons are in the range of 8-15 nm and ∼5-10, respectively.  相似文献   

16.
Actinide materials demonstrate a wide variety of interesting physical properties in both bulk and nanoscale form. To better understand these materials, a broad array of microscopy techniques have been employed, including transmission electron microscopy (TEM), electron energy-loss spectroscopy (EELS), energy dispersive X-ray spectroscopy (EDXS), high-angle annular dark-field imaging (HAADF), scanning electron microscopy (SEM), wavelength dispersive X-ray spectroscopy (WDXS), electron back scattered diffraction (EBSD), scanning tunneling microscopy (STM), atomic force microscopy (AFM), and scanning transmission X-ray microscopy (STXM). Here these techniques will be reviewed, highlighting advances made in the physics, materials science, chemistry, and biology of actinide materials through microscopy. Construction of a spin-polarized TEM will be discussed, considering its potential for examining the nanoscale magnetic structure of actinides as well as broader materials and devices, such as those for computational magnetic memory.  相似文献   

17.
The structural transformation of MoO3 nanobelts into MoS2 nanotubes using a simple sulfur source has been reported. This transformation has been extensively investigated using electron microscopic and spectroscopic techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), electron diffraction (ED), and energy-dispersive X-ray analysis (SEM-EDAX and TEM-EDX). The method described in this report will serve as a generic route for the transformation of other oxide nanostructures into the chalcogenide nanostructures.  相似文献   

18.
The structural-morphological parameters of hybrid nanosystems, which are promising as photosensitizers (PS) for photodynamic therapy (PDT), are comparatively studied by atomic force microscopy (AFM), ultraviolet (UV) spectroscopy, photoluminescence (PL) and dynamic light scattering. The nanosystems are nanoparticles of zinc selenide (ZnSe) prepared using the hydrothermal synthesis method, stabilized by various polymer matrices: bovine serum albumin (BSA), polymethacrylic acid (PMAA) and, the second generation PS, photoditazin (PD). Comparison of the nanostructure size characteristics in ZnSe nanoparticles/polymer + PD systems (in a solution by means of the molecular optics and PL, and on a surface of a silicon wafer in air by means of AFM) at the same concentration of reagents in the reaction mixture shows that nanocluster sizes in the solution are two times larger than those in a thin film prepared on the substrate surface. When the order of the BSA and PD introduction into the system is changed, the nanosystem morphology changes strongly (nanocluster sizes and shape), which is due to the competition of the polymer stabilizers during complex formation with ZnSe nanoparticles. Analysis of the photoluminescence excitation and emission spectra of PD and the triple-system aqueous solutions shows that the ZnSe/BSA nanostructures do not suppress PD photoluminescence in the triple system ZnSe/BSA + PD, i.e., do not affect their ability to generate active forms of oxygen and make them promising as the basis for the creation of photosensitive compounds for PDT in oncology.  相似文献   

19.
韩玉岩  曹亮  徐法强  陈铁锌  郑志远  万力  刘凌云 《物理学报》2012,61(7):78103-078103
在分子束外延(MBE)系统中, 利用物理气相沉积(PVD)的方法在阳极氧化铝(AAO)模板上制备了有机 染料分子苝四甲酸二酐(PTCDA)的不同纳米结构; 并使用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、 高分辨透射电子显微镜(HRTEM)以及选区电子衍射(SAED)技术进行了系统的研究. 结果发现, 当衬底温度(Ts)为330 ℃时得到的是纳米丝、针、带以及棒; Ts为280 ℃, 230 ℃, 180 ℃时得到的主要是纳米棒, 并且纳米棒的长度随Ts的降低而变短; Ts为50 ℃时只能得到连续的PTCDA薄膜. HRTEM以及SAED结果证实了纳米针与棒为单晶. 依据SEM结果, 提出纳米结构的生成主要受Ts以及衬底表面曲率的影响.  相似文献   

20.
Cauliflower-like ZnO nanostructures with average crystallite size of about 55 nm which have surface one dimensional (1D) nanoarrays with 10 nm diameter were successfully fabricated through a simple sonochemical route. X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and room temperature photoluminescence (PL) characterizations were performed to investigate the morphological and structural properties of the obtained nanostructures. It has been shown that the synthesized cauliflower-like ZnO nanostructures irradiated UV luminescence and a green peak in visible band. Ultrasonic post-treatment of the particles for about 2 h increased the density of surface defects resulted in an increase in the green emission intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号