首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
端面泵浦掺Yb3+双包层光纤激光器   总被引:1,自引:0,他引:1       下载免费PDF全文
从双包层光纤激光器的速率方程出发,得到了光纤中泵浦光与激光的功率分布、输出功率与泵浦功率的关系、腔镜反射率及光纤长度对输出功率的影响。研究结果表明:输出激光功率与光纤长度及后腔镜反射率有很强的依赖关系,存在一个输出功率最大的最佳光纤长度。后腔镜反射率越大,输出激光功率越小;当光纤长度较短时,在输出端放置反射镜使泵浦光高反射,可以提高输出功率和效率。通过对端面泵浦掺Yb3+双包层光纤激光器进行理论分析和实验研究,得到输出激光的中心波长为1088.3nm,斜率效率为33.7%,最大输出功率为1.75W。  相似文献   

2.
掺Yb3+双包层大模面积光子晶体光纤激光器的研究   总被引:9,自引:4,他引:5  
采用多模大功率半导体激光器泵浦掺镱双包层大模面积光子晶体光纤,应用5 m长光子晶体光纤,在泵浦功率为22 W的条件下,获得了1.03 μm,功率为65 mW的单横模激光输出,同时实验研究了输出功率与泵浦功率的关系,并观察到掺Yb3+光子晶体光纤侧面有绿色荧光出现.  相似文献   

3.
15 W光子晶体光纤激光器的研究   总被引:6,自引:3,他引:3  
采用多模大功率980nm半导体激光器泵浦20m 掺Yb双包层光子晶体光纤, 获得了1.09 μm,功率为15 W的激光输出.详细研究了输出功率与泵浦功率的关系.  相似文献   

4.
本文研究了包层泵浦全光纤调Q激光器。掺Yb光纤为增益介质,光纤光栅和光纤的垂直端面作为腔镜,利用光纤中的受激布里渊散射和光纤干涉环实现了较稳定的自调Q脉冲输出。在连续泵浦方式下得到了脉宽3.6ns、周期约25μs、峰值功率600W的光脉冲。  相似文献   

5.
2.2 W掺Yb3+双包层光子晶体光纤激光器   总被引:22,自引:16,他引:6  
采用多模大功率972 nm半导体激光器泵浦20 m掺Yb双包层光子晶体光纤,详细研究了输出功率与泵浦功率的关系, 获得了1.09 μm,功率为2.2 W的激光输出.  相似文献   

6.
报道了全光纤2.15μm波段光纤气体拉曼激光器。将实芯单模光纤与空芯光子晶体光纤直接熔接制备成全光纤气体腔,并在实芯光纤上刻写长周期光纤光栅,防止菲涅耳反射回光对泵浦源造成损坏。以1971 nm脉冲光纤放大器作为泵浦源,当腔内气压为1.4 GPa时,2.15μm拉曼光的最大平均功率约为0.87 W,受限于较高的拉曼阈值,光光转换效率只有19%。本研究为实现2.15μm光纤激光光源提供了一种新的可行的技术方案。  相似文献   

7.
对强泵浦下线形腔掺Yb3+双包层光纤激光器输出特性进行了理论和实验研究。通过数值模拟,分析了泵浦光及激光在光纤中的分布、输出功率与泵浦功率的关系、光纤长度及腔镜反射率对激光输出功率的影响。在实验中,利用D型掺Yb3+双包层光纤获得了输出功率10 6W的光纤激光输出,斜率效率达86%。测量了在不同输出耦合条件下的输出功率、阈值泵浦功率和斜率效率,理论分析与实验结果基本一致,为进一步提高光纤激光器功率提供了理论和实验依据。  相似文献   

8.
设计了一台二极管泵浦的具有新型四通泵浦结构及接触式水冷装置的Yb∶YAG薄片激光器.激光泵浦源采用中心波长为940nm的二极管激光器,利用多模光纤进行耦合输出.YAG晶体Yb3+离子掺杂浓度为10%,几何尺寸为直径10mm,厚度500μm.激光晶体的散热装置采用自来水直接冷却,自来水通过铜热沉中打通的V型槽与薄片晶体直接接触.泵浦耦合系统采用聚焦透镜和一对直角棱镜的组合实现四通泵浦,聚焦透镜规格为直径50mm,焦距50mm.模拟了谐振腔的稳定性及不同腔长条件下所对应的激光光斑半径,设计了不同腔型的Yb∶YAG薄片激光器.在F-P腔中采用透过率为5%的输出耦合镜,获得了最高功率为3.28W的1 031nm连续激光输出,光束质量因子M2x=1.79,M2y=1.86,斜效率为20.5%.  相似文献   

9.
全光纤化掺铥光纤激光器作为光学参量振荡器的泵浦源,可以实现3~5μm激光输出,在激光雷达和光电对抗领域有着极为重要的应用前景.本文运用全国产化的泵浦光耦合器和双包层掺铥光纤实现了全光纤化掺铥光纤激光器.该光纤激光器采用自制的光纤布喇格光栅作为反射腔镜,增益光纤采用水冷的方式.光纤布喇格光栅通过45fs、800nm的飞秒脉冲光和相位掩模板直接在双包层掺铥光纤上刻蚀得到,泵浦光通过泵浦光耦合器的一端耦合进入增益光纤,产生的激光由泵浦光耦合器的另一端输出.输出激光的最高功率达到22.2W,激光波长为1.96μm,斜率效率约为37%,激光线宽为72.4pm.  相似文献   

10.
基于对Nd∶GdVO4 晶体热焦距的测量及其 1.0 6 μm激光基本性能 ,用三镜折叠腔研究了半导体激光器 (LD)泵浦的Nd∶GdVO4 /KTP晶体的内腔倍频性质 当用从直径为 2 0 0 μm的单光纤输出的低功率的半导体激光泵浦时 ,绿光的阈值是 2 6mW ,光光转换效率为 17.3% 当用从直径为 1.5 5mm的光纤束输出的高功率的半导体激光泵浦时 ,绿光的阈值是 2 0 0mW ,光光转换效率为 19.35 %  相似文献   

11.
光子晶体光纤放大器增益特性的实验研究   总被引:1,自引:1,他引:0  
 采用掺Yb3+双包层光子晶体光纤作为放大器的增益介质,在双端泵浦方式下,理论并实验研究了不同信号光时放大器的增益特性。在双端泵浦方式下,泵浦总功率为150.2 W、信号光功率为6 W时,获得了72 W的功率输出,斜率效率达到了60%。实验发现当泵浦总功率超过一定值时,由光纤端面反射形成的振荡腔引起放大器寄生振荡,并由于各种非线性效应出现了自脉动现象,影响了输出功率的进一步提高。  相似文献   

12.
高功率光子晶体光纤激光器实验研究   总被引:3,自引:1,他引:2       下载免费PDF全文
 利用F-P谐振腔实验研究了高功率掺Yb3+光子晶体光纤激光器。使用915 nm和976 nm两种波长的泵浦源进行双端泵浦,在23 m长的双包层光子晶体光纤中获得了552 W的连续单模激光输出。该激光器的斜率效率约为76%,光-光转换效率为56%,光谱中心波长为1 078 nm,光束质量平方因子为1.2。  相似文献   

13.
利用多个激光晶体串接方式可以提高固体激光器的输出功率 发展双Nd∶YVO4 晶体激光器 ,将晶体的端面镀膜作为谐振腔的端面镜 ,构成了平行平面谐振腔 对平行平面谐振腔的等效腔进行了理论分析 ,结果表明激光晶体吸收泵浦光产生的热透镜效应对保持腔的稳定性起到了重要的作用 在国内首次进行了双端泵浦双Nd∶YVO4 激光器的实验研究 ,在抽运功率为 2 0 .74W时获得了 11W的 10 6 4nmTEM0 0 模激光输出 ,其光 光转化效率约为 5 3% 并且对于不同掺杂浓度下的实验结果进行了讨论  相似文献   

14.
LD泵浦Nd:YAG/Cr:YAG腔外频率变换高功率紫外激光器   总被引:8,自引:4,他引:4  
用KTP晶体对激光二极管端面泵浦的Nd:YAG晶体;Cr:YAG被动调Q产生的1064nm脉冲激光器进行腔外倍频,用BBO晶体四倍频产生266 nm紫外激光.用15 W的LD阵列;当LD泵浦功率为12 W的情况下;红外(1064 μm)调Q平均输出功率为2.2 W;脉冲序列周期为40 μs;脉宽为18ns;峰值功率高达4.9kW.采用KTP腔外二倍频;532nm的绿光输出平均功率为850mW;用BBO腔外四倍频;266nm的紫外光输出平均功率高达215mW,绿光-紫外光光转换效率为25.2%, 红外到紫外总的转换效率为9.8%.  相似文献   

15.
高效掺Yb3+双包层光纤激光器的研究   总被引:5,自引:2,他引:3  
采用多模大功率半导体激光器泵浦掺Yb双包层D型光纤,详细研究了输出功率与泵浦的关系,使用5m长多模光纤,获得了1.07μm,功率为7.2W的激光输出。  相似文献   

16.
采用一种新型的Nd:YVO4/YVO4复合晶体,利用V型折叠腔,研究了高功率激光二极管端面泵浦的Nd:YVO4/YVO4复合晶体激光器基频1.06 μm及倍频532 nm激光的输出特性.当泵浦功率为24.6 W时,获得1.06 μm激光的最大输出功率为11.7 W,光-光转换效率为48%.当泵浦功率为17 W时,获得了5.32 W的绿光输出,光-光转换效率达到31.3%.  相似文献   

17.
3.8 W光子晶体光纤喇曼激光器   总被引:2,自引:0,他引:2  
详细研究了光子晶体光纤拉曼激光器,并首次获得瓦量级的二级喇曼光连续输出.所用泵浦源为20W掺镱光纤激光器(IPG,PYL-20M),中心波长为1070.5nm.光子晶体光纤(Crystal-fiber A/S)的纤芯直径为2.1±0.3μm,在1550nm波长处的模场直径为2.8μm,非线性系数γ=11W-1km-1;包层直径为12  相似文献   

18.
报道了基于V:YAG可饱和吸收体的1.34μm被动调Q锁模Nd:YVO4激光器。采用直腔结构,使用透过率为10%的输出镜,在LD端面泵浦的情况下,实现了重复频率高达2.6GHz的1.34μm调Q锁模运转。Nd:YVO4晶体中,Nd3+离子掺杂质量分数为0.2%,V:YAG晶体的初始透过率为83%。在泵浦功率为11 W时,1.34μm调Q锁模激光的最大平均输出功率为308mW,光-光转换效率为2.8%。  相似文献   

19.
高功率光子晶体光纤激光器实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
 从光纤热传导方程出发,研究了不同泵浦光吸收系数对光纤激光器沿光纤长度方向温度分布的影响。结果表明,低吸收系数光纤泵浦端温度相对较低,分布较为平缓,有效减缓光纤的热损伤。根据理论分析结果,实验中选择了吸收系数为1.45 dB/m的掺Yb3+双包层光子晶体光纤作为增益介质,在泵浦光功率为560 W时,获得了428.5 W的高功率单模连续输出,斜率效率为76.5%,光束质量因子M2<1.2。由于泵浦端光纤温度较高,实验中对光纤两端进行了主动冷却,并且在离光纤端面约25 cm处的光纤表面温度进行实时测量,结果发现随着泵浦光功率的增加,光纤表面温度均匀增长,最高温度为310 K,温度正常。  相似文献   

20.
大芯径晶体波导可吸收更高功率的泵浦光,能够实现更高的输出功率,同时在锁模运行时芯层中的峰值功率密度相对较低,而且减少了非线性效应的积累。基于此,构建了一种基于Yb:YAG大芯径晶体方波导的被动锁模皮秒激光器。实验中,首先使用高反镜替代半导体可饱和吸收镜(SESAM),在较高的泵浦功率下调节晶体波导的位置和角度以实现泵浦光与波导芯层的匹配;然后,仔细调节球面反射镜的角度,使信号光耦合进波导芯层中以尽量减小腔内的损耗。所设计的激光器采用折叠腔结构,在腔内没有色散补偿器件的情况下,实现了平均功率为10.2 W、脉冲宽度为65 ps、重复频率为30.15 MHz、单脉冲能量为0.34μJ的激光输出。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号