首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We suggest a general approach for extending quantum key distribution (Q, KD) protocols possessing discrete rotational symmetry into quantum secret sharing (QSS) schemes among multiparty, under certain conditions. Only local unitary operations are required for this generalization based on the almost mature technologies of Q, KD. Theoretically, the number of the participating partners can be arbitrary high. As an application of this method, we propose a fault-tolerant QSS protocol based on a fault-tolerant QKD implementation. The 6-state protocol is also discussed.  相似文献   

2.
A scheme for three-party quantum secret sharing of a private key is presented with single photons. The agent Bob first prepares a sequence of single photons with two biased bases and then sends them to the boss Alice who checks the security of the transmission with measurements and produces some decoy photons by rearranging the orders of some sample photons. Alice encodes her bits with two unitary operations on the photons and then sends them to the other agent. The security of this scheme is equivalent to that in the modified Bennett Brassard 1984 quantum key distribution protocol. Moreover, each photon can carry one bit of the private key and the intrinsic efficiency for qubits and the total efficiency both approach the maximal value 100% when the number of the bits in the key is very large.  相似文献   

3.
We propose a multiparty quantum cryptographic protocol. Unitary operators applied by Bob and Charlie, on their respective qubits of a tripartite entangled state encoding a classical symbol that can be decoded at Alice's end with the help of a decoding matrix. Eve's presence can be detected by the disturbance of the decoding matrix. Our protocol is secure against intercept resend attacks. Furthermore, it is eifficient and deterministic in the sense that two classical bits can be transferred per entangled pair of qubits. It is worth mentioning that in this protocol, the same symbol can be used for key distribution and Eve's detection that enhances the etfficiency of the protocol.  相似文献   

4.
We demonstrate experimentally an intrinsically stable polarization coding and decoding system composed of optical-fiber Sagnac interferometers with integrated phase modulators for quantum key distribution. An interference visibility of 98.35% can be kept longtime during the experiment without any efforts of active compensation for coding all four desired polarization states.  相似文献   

5.
We show that non-maximally entangled states can be used to build a quantum key distribution (QKD) scheme where the key is probabilistically teleported from Alice to Bob. This probabilistic aspect of the protocol ensures the security of the key without the need of non-orthogonal states to encode it, in contrast to other QKD schemes. Also, the security and key transmission rate of the present protocol is nearly equivalent to those of standard QKD schemes and these aspects can be controlled by properly harnessing the new free parameter in the present proposal, namely, the degree of partial entanglement. Furthermore, we discuss how to build a controlled QKD scheme, also based on partially entangled states, where a third party can decide whether or not Alice and Bob are allowed to share a key.  相似文献   

6.
We improve the quantum key distribution protocol proposed by Pereira et al. [S.F. Pereira, Z.Y. Ou, H.J. Kimble, Phys. Rev. A 62 (2000) 042311], by employing the second-order coherence of optical fields, which can be easy experimentally measured with a Hanbury-Brown and Twiss intensity interferometer. It is shown that eavesdropping can be directly detected without sacrificing extra secret bits as test key. The efficiency of the improved system is enhanced greatly, since no secret bit needs to be discarded.  相似文献   

7.
We propose a decoy state quantum key distribution scheme with odd coherent state which follows sub-Poissonian distributed photon count and has low probability of the multi-photon event and vacuum event in each pulse. The numerical calculations show that our scheme can improve efficiently the key generation rate and secure communication distance. Fhrthermore, only one decoy state is necessary to approach to the perfect asymptotic limit with infinite decoy states in our scheme, but at least two decoy states are needed in other scheme.  相似文献   

8.
The performance of the differential-phase-shift keying (DPSK) protocol applying a 1310nm up-conversion singlephoton detector is analysed. The error rate and the communication rate as a function of distance for three quantum key distribution protocols, the Bennett-Brassard 1984, the Bennett-Brassard -Mermin 1992, and the DPSK, are presented. Then we compare the performance of these three protocols using the 1310 nm up-conversion detector. We draw the conclusion that the DPSK protocol applying the detector has significant advantage over the other two protocols. Longer transmission distance and lower error rate can be achieved.  相似文献   

9.
Using high-dimensional quantum error-avoiding code, we present two new quantum key distribution protocols over a collective noisy channel, i.e. six-photon and five-photon quantum error-avoiding codes. Compared with the previous protocols using four-photon and three-photon quantum error-avoiding code, the qubit efficiencies of the new protocols have increases of 16.67% and 5% respectively. In addition, the security of these protocols is analysed with a conclusion that the new protocols are much more secure than the four-photon and three-photon ones.  相似文献   

10.
We apply the finite key analysis to the decoy state quantum key distribution scheme and obtain a practical key rate. By simulating an practical experiment setups and the Vacuum + Weak decoy state method, we show that both the key rate and maximal secure distance are reduced when the finite key analysis is considered.  相似文献   

11.
Based on the controlled order rearrange encryption (CORE) for quantum key distribution using EPR pairs [Fu.G. Deng, G.L. Long, Phys. Rev. A 68 (2003) 042315], we propose a generalized controlled order rearrangement encryption (GCORE) protocol using non-maximally entangled W-class states with probability, but it also has full efficiency and we compare the similarity and difference with original protocol. Besides, we use this W-class state to split quantum information, thus the scheme is robust against decoherence.  相似文献   

12.
Quantum Key Distribution Network Based on Differential Phase Shift   总被引:4,自引:0,他引:4       下载免费PDF全文
Using a series of quantum correlated photon pairs, we propose a theoretical scheme for any-to-any multi-user quantum key distribution network based on differential phase shift. The differential phase shift and the different detection time slots ensure the security of our scheme against eavesdropping. We discuss the security under the intercept-resend attack and the source replacement attack.  相似文献   

13.
The influence of imperfections on achievable secret-key generation rates of quantum key distribution protocols is investigated. As examples of relevant imperfections, we consider tagging of Alice's qubits and dark counts at Bob's detectors, while we focus on a powerful eavesdropping strategy which takes full advantage of tagged signals. It is demonstrated that error correction and privacy amplification based on a combination of a two-way classical communication protocol and asymmetric Calderbank-Shor-Steane codes may significantly postpone the disastrous influence of dark counts. As a result, the distances are increased considerably over which a secret key can be distributed in optical fibres reliably. Results are presented for the four-state, the six-state, and the decoy-state protocols.  相似文献   

14.
Quantum teleportation is one of the most important subjects in quantum information science. This is because quantum teleportation can be regarded as not only quantum information transfer but also a building block for universal quantum information processing. Furthermore, deterministic quantum information processing is very important for efficient processing and it can be realized with continuous-variable quantum information processing. In this review, quantum teleportation for continuous variables and related quantum information processing are reviewed from these points of view.  相似文献   

15.
We propose a scheme of quantum secret sharing between Alice's group and Bob's group with single photons and unitary transformations. In the protocol, one member in Alice's group prepares a sequence of single photons in one of four different states, while other members directly encode their information on the sequence of single photons via unitary operations; after that, the last member sends the sequence of single photons to Bob's group. Then Bob's, except for the last one, do work similarly. Finally the last member in Bob's group measures the qubits. If the security of the quantum channel is guaranteed by some tests, then the qubit states sent by the last member of Alice's group can be used as key bits for secret sharing. It is shown that this scheme is safe.  相似文献   

16.
Based on controlled order rearrange encryption (CORE) for quantum key distribution using EPR pairs [Fu.G. Deng, G.L. Long, Phys. Rev. A 68, 042315 (2003)], we propose generalized controlled order rearrangement encryption (GCORE) protocols of N qubits and N qutrits, and concretely display them in cases using 3-qubit, 2-qutrit maximally entangled basis states. We further show that our protocols will become safer with an increase in dimensions and number of particles. Moreover, we carry out the security analysis using quantum covariant cloning machine. Although the applications of the generalized scheme need to be further studied, GCORE has many distinct features such as large capacity and high efficiency.  相似文献   

17.
The quantum bit rate is an important operating parameter in free-space quantum key distribution. We introduce the measuring factor and the sifting factor, and present the expressions of the quantum bit rate based on the ideal single-photon sources and the single-photon sources with Poisson distribution. The quantum bit rate is studied in the numerical simulation for the laser links between a ground station and a satellite in a low earth orbit. The results show that it is feasible to implement quantum key distribution between a ground station and a satellite in a low earth orbit.  相似文献   

18.
We present an effective scheme to teleport an unknown ionic entangled internal state via trapped ions without joint Bell-state measurement. In the constructed quantum channel process, we adopt entanglement swapping to avoid decrease of entanglement during the distribution of particles. Thus our scheme provides new prospects for quantum teleportation over longer distance. The distinct advantages of our scheme are that our scheme is insensitive to heating of vibrational mode and can be generalized to teleport an N-ion electronic entangled GHZ class state. Furthermore, in our scheme the success probability can reach 1.  相似文献   

19.
A secure quantum key distribution protocol is proposed to distribute the three-dimensional secret message in a two-way quantum channel based on the entanglement of two-qutrit quantum system. The present protocol has an advantage over transmitting directly the secret message with large capacity since the distributed message has been imposed on nonorthogonal two-qutrit-entangled states by the sender using the superdense coding via local unitary operations. The security is ensured by the entanglement of the two-qutrit quantum system and the secure transmission of the traveling-particle sequence in the lossless and noiseless channel.  相似文献   

20.
We present two schemes for multiparty quantum remote secret conference in which each legitimate conferee can read out securely the secret message announced by another, but a vicious eavesdropper can get nothing about it. The first one is based on the same key shared efficiently and securely by all the parties with Greenberger-Horne- Zeilinger (GHZ) states, and each conferee sends his secret message to the others with one-time pad crypto-system. The other one is based on quantum encryption with a quantum key~ a sequence of GHZ states shared among all the conferees and used repeatedly after confirming their security. Both these schemes are optimal as their intrinsic efficiency for qubits approaches the maximal value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号