首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文采用尺寸选择的负离子光电子能谱与高精度理论计算,对AlnC4-/0(n=2∽4))团簇的结构和成键性质进行了研究. Al2C4-团簇负离子的最稳定结构是一个C2v对称的平面结构,其中两个C2单元与两个铝原子分别相连. Al2C4-团簇负离子的次稳定结构是一个线型结构,两个铝原子位于C4线型结构两端,能量仅比最稳定结构高0.05 eV. 中性Al2C4团簇是一个线型结构. Al3C4-团簇负离子是一个平面结构,其中三个铝原子分别与两个C2单元相连. 而中性Al3C4团簇则是一个V字型结构. Al4C4-团簇负离子和中性Al4C4团簇均为C2h对称的平面结构,四个铝原子分别位于两个C2单元的末端. AlnC4-/0(n=2∽4))团簇负离子的自适应自然密度配分的分析结果表明这些团簇中铝原子与C2单元之间的化学键具有σ和π键特征.  相似文献   

2.
本文利用尺寸选择的负离子光电子能谱和理论计算探索Au_2Ge_n~(-/0)(n=1~8)团簇的结构演化和电子性质.通过比较理论模拟谱与实验谱,并使用CCSD(T)理论方法计算异构体的相对能量,从而确定金锗混合团簇的全局最小结构.本文发现Au_2Ge_n~(-/0)(n=1~8)团簇的两个Au原子具有较高的配位数和较弱的亲金相互作用.负离子团簇和中性团簇的最稳定结构分别处于自旋双重态和自旋单重态.除了Au_2Ge_4~(-/0)和Au_2Ge_5~(-/0),负离子团簇和中性团簇的全局最小结构具有相似的结构特点.Au_2Ge_1~(-/0)团簇是一个C_(2v)对称的V形结构,而Au_2Ge_2~(-/0)团簇是一个C_(2v)对称的双桥连结构.Au_2Ge_4~-负离子团簇是两个Au原子盖帽的Ge_4四面体结构,而Au_2Ge_4中性团簇是两个Au原子盖帽的Ge_4菱形结构.Au_2Ge_(5~8)~(-/0)团簇主要采用三棱柱、四棱柱、及五棱柱结构.Au_2Ge_6是一个C_(2v)对称的四棱柱结构,并表现出σ和π双键性质.  相似文献   

3.
基于密度泛函理论结合粒子群优化算法程序CALYPSO研究了掺Be硼团簇BeB_n~(0/–)(n=10—15)的基态几何结构;然后采用密度泛函理论分析了最低能量结构的电子结构、极化率、红外光谱、紫外可见光谱特性.研究结果表明:BeB_(10)~(0/–),BeB_(11)~-,BeB_(12)~(0/-),BeB_(14)~-具有平面或准平面结构;BeB_(11),BeB_(13),BeB_(13)~-,BeB_(14)分别具有半三明治结构、圆锥结构、笼型结构、压扁的管状结构;BeB_(15)~(0/-)呈现手性对称结构.自然布居分析(NPA)表明掺杂Be原子将电子转移给硼原子.团簇的平均结合能分析可得,阴离子比相应中性团簇的稳定性强;另外,随着n的增加,中性和阴离子团簇的稳定性增强.准平面结构BeB_(10),BeB_(11)~-,BeB_(12)团簇的适应性自然密度划分(AdNDP)分析表明,s键促进了整个分子的稳定性,多中心π键进一步稳定了整个分子;另外,这三个团簇满足6个π电子Hückel规则(4m+2),具有芳香性.极化率分析可得,平面或准平面结构的每个原子的平均极化率大于其它结构,说明平面或准平面结构的电子离域效应较大;BeB_(13)~-,BeB_(14)~-具有较大的第一超极化率,说明具有较强的非线性光学响应.红外光谱分析表明这些团簇具有不同的特征峰,可用于鉴别这些结构;闭壳层结构团簇的紫外可见光谱在可见光波段都有吸收峰,开壳层结构团簇的紫外可见光谱在红外光波段都有吸收峰.  相似文献   

4.
用密度泛函理论的B3LYP方法在6-311G(d)水平上对AlB+n(n=2~10)团簇几何结构、稳定性、电子结构和成键特性进行了系统理论研究,得到了AlB+n(n=2~10)团簇的最稳定结构.结果表明,硼原子间容易聚集,铝原子处于整个硼原子集团的外围.与相应中性AlBn团簇相比,Al-B键作用变弱,使正价团簇(n=6和10除外)结构变化较大|对AlB+n(n=2~10)和相应中性团簇能隙的计算分析表明,AlB+n 团簇的稳定性有所增强,其中AlB+3、AlB+5和AlB+8团簇尤为显著|通过对最稳定构型红外振动光谱的研究分析表明,硼原子间对称或非对称振动、铝原子不动的振动模式更容易出现较强谱峰,即硼原子间更容易成键.  相似文献   

5.
基于密度泛函理论和卡里普索结构预测方法,系统研究了V_nB_(8(n+1))~-(n=1-3)团簇的几何结构、电子和光谱特性.首先,利用卡里普索结构预测方法确定了VB_(16)~-的基态结构为高对称性的C_(2v)点群对称结构.在此基态结构基础上,通过堆积的方式优化得到了V_2B_(24)~-和V_3B_(32)~-团簇的基态结构.结果显示,V_2B_(24)~-和V_3B~(32)~-团簇分别拥有高对称性的C_(4h)和D_(8d)点群对称结构.基于上述基态结构,系统分析了不同尺寸团簇的自然布局分布和自然电子组态、Mayer键级和电子局域函数.最后,讨论了不同团簇的红外、拉曼光谱等光谱特性,为过渡金属钒掺杂硼基纳米材料的研究提供理论参考.  相似文献   

6.
用密度泛函理论(DFT)中的杂化密度泛函B3LYP方法,在6-31G(d)的水平上对Si4N4团簇的可能结构进行了几何结构优化和电子结构计算,得到了可能的17个异构体.Si4N4团簇的最稳定结构是有8个Si-N键的平面结构.用自然键轨道(NBO)方法分析了成键性质.计算结果表明,Si-N键中Si原子向N原子有较大的电荷转移,因此Si-N原子间有较强的电相互作用;最强的IR和Raman谱峰分别位于1387.64cm-1和1415.05cm-1处;并计算了Si4N4团簇的最稳定结构的极化率和超极化率.  相似文献   

7.
本文采用尺寸选择的负离子光电子能谱技术,结合密度泛函理论,对Ta4Cn^-/0(n=0-4)团簇电子结构、成键性质以及稳定性进行了研究.实验测得Ta4Cn-(n=0—4)团簇负离子基态结构的垂直脱附能分别为(1.16±0.08),(1.35±0.08),(1.51±0.08),(1.30±0.08)和(1.86±0.08)eV.中性Ta4Cn(n=0—4)团簇的电子亲和能分别为(1.10±0.08),(1.31±0.08),(1.44±0.08),(1.21±0.08)和(1.80±0.08)eV.研究发现Ta4^-/0团簇为四面体结构,Ta4C1-/0团簇中碳原子覆盖在Ta4四面体的一个面上方,Ta4C2^-/0团簇则是两个碳原子分别覆盖在Ta4四面体中的两个面上方.Ta4C3^-/0团簇是一个缺角立方体结构.Ta4C4^-/0团簇则是近似立方体结构,可以看成是α-TaC面心立方晶体的最小晶胞单元.分子轨道分析结果显示Ta4C3团簇的单电子最高占据轨道主要布居在单个钽原子周围,导致Ta4C3^-团簇的垂直脱附能明显低于其相邻团簇.理论研究显示随着碳原子数目的增加,Ta4Cn^-/0(n=0—4)团簇中的钽-钽金属键逐渐被钽-碳共价键取代,单原子结合能逐渐增加且明显高于Ta4+n^-/0(n=0-4)团簇.中性Ta4C4的单原子结合能高达7.13 eV,这说明钽-碳共价键的形成有利于提高材料的熔点,这与碳化钽作为高温陶瓷材料的特性密切相关.  相似文献   

8.
本文利用尺寸选择的负离子光电子能谱和理论计算探索Au2Gen-/0 (n=1∽8)团簇的结构演化和电子性质. 通过比较理论模拟谱与实验谱,并使用CCSD(T)理论方法计算异构体的相对能量,从而确定金锗混合团簇的全局最小结构. 本文发现Au2Gen-/0 (n=1∽8)团簇的两个Au原子具有较高的配位数和较弱的亲金相互作用. 负离子团簇和中性团簇的最稳定结构分别处于自旋双重态和自旋单重态. 除了Au2Ge4-/0和Au2Ge5-/0,负离子团簇和中性团簇的全局最小结构具有相似的结构特点. Au2Ge1-/0团簇是一个C2v对称的V形结构,而Au2Ge2-/0团簇是一个C2v对称的双桥连结构. Au2Ge1-负离子团簇是两个Au原子盖帽的Ge4四面体结构,而Au2Ge4中性团簇是两个Au原子盖帽的Ge4菱形结构. Au2Ge5∽8-/0团簇主要采用三棱柱、四棱柱、及五棱柱结构. Au2Ge6是一个C2v对称的四棱柱结构,并表现出σ和π双键性质.  相似文献   

9.
用密度泛函理论的B3LYP方法在6-311G(d)水平上对AlB+n(n=2~10)团簇几何结构、稳定性、电子结构和成键特性进行了系统理论研究,得到了AlB+n(n=2~10)团簇的最稳定结构.结果表明,硼原子间容易聚集,铝原子处于整个硼原子集团的外围.与相应中性AlBn团簇相比,Al-B键作用变弱,使正价团簇(n=6...  相似文献   

10.
MgmBn(m=1,2;n=1-4)团簇结构与性质的密度泛函理论研究   总被引:3,自引:0,他引:3       下载免费PDF全文
用密度泛函理论(DFT)的杂化密度泛函B3LYP方法在6-31G*基组水平上对MgmBn(m=1,2;n=1-4)团簇各种可能的构型进行几何结构优化,预测了各团簇的最稳定结构.并对最稳定结构的振动特性、电离势、成键特性、极化率和超极化率等性质进行了理论研究.结果表明,团簇的最稳定结构大多是平面结构,团簇的稳定结构中通常是几个呈负电性的B原子形成一个负电中心,而其他B原子和Mg原子通常处在端位,且显正电性;团簇中通常是B-B键和B-Mg键共存,极少出现Mg-Mg键,计算得到的B-B键键长在0.153-0.182nm之间,B-Mg键键长在0.221-0.231nm之间.  相似文献   

11.
吕瑾  杨丽君  王艳芳  马文瑾 《物理学报》2014,63(16):163601-163601
采用密度泛函理论的B3LYP方法,在6-311G**水平上对Al2S±n(n=2—10)团簇的几何结构和电子结构进行了理论计算.讨论了铝硫二元离子混合团簇基态结构的变化规律、电荷转移和成键特征.结果表明,在S簇中掺杂Al原子会使Sn结构发生明显改变.Al2S±n团簇基态结构是以Al2S2四元环为骨架或桥梁,分别与S原子或S簇相结合形成单环到三环的平面和立体结构.结构中化学键键型和成键数目影响团簇的稳定性.通过对基态结构的解离能和能量二次差分值的分析得到了Al2S±n团簇的稳定性信息.  相似文献   

12.
Nd:YAG产生的二倍频532 nm激光消融钛金属靶表面,产生钛金属蒸汽,同时含有3%乙炔的氦载气喷向旋转的金属靶,通过等离子体反应形成中性的气相金属-碳链团簇分子,经过266 nm的激光电离,在飞行时间质谱仪上获得了TiC_~x+(x=0-4)和Ti_2C_4~+团簇的离子信号.实验发现:对于TiC_x~+离子,含偶数碳原子的团簇离子信号较强.为了更好的理解金属碳笼的形成机理,利用Gaussian 09程序对Ti_2C_4~+团簇离子进行了结构优化,获得了其稳定构型.它的形成可以看作是分别由两个Ti-C键连接的两个环状的TiC_2构成,也可以看作是由两个准线性的Ti-C-C键构成.  相似文献   

13.
用密度泛函理论(DFT)的杂化密度泛函B3LYP方法在6-31G*基组水平上对(XB2)2(X=Al,Be,Na,Mg)团簇各种可能的构型进行几何结构优化,预测了各团簇的最稳定结构.并对最稳定结构的电子结构、振动特性、成键特性和电荷特性等进行了理论研究.结果表明,团簇的几何结构大多是平面结构,通常是B-B键和B-X键共存,较少出现X-X键.团簇的稳定结构中通常是几个呈负电性的B原子形成一个负电中心,而其他B原子和X原子处在端位,且显正电性.  相似文献   

14.
用密度泛函理论(DFT)的杂化密度泛函B3LYP方法在6-31G·基组水平上对(XB2)2(X=Al,Be,Na, Mg)团簇各种可能的构型进行几何结构优化,预测了各团簇的最稳定结构.并对最稳定结构的电子结构、振动特性、成键特性和电荷特性等进行了理论研究.结果表明,团簇的几何结构大多是平面结构,通常是B-B键和B-X键共存,较少出现X-X键.团簇的稳定结构中通常是几个呈负电性的B原子形成一个负电中心,而其他B原子和X原子处在端位,且显正电性.  相似文献   

15.
陈玉红  张材荣  马军 《物理学报》2006,55(1):171-178
用密度泛函理论(DFT)的杂化密度泛函B3LYP方法在6-31G基组水平上对MgmBn(m=1,2;n=1-4)团簇各种可能的构型进行几何结构优化,预测了各团簇的最稳定结构.并对最稳定结构的振动特性、电离势、成键特性、极化率和超极化率等性质进行了理论研究.结果表明,团簇的最稳定结构大多是平面结构,团簇的稳定结构中通常是几个呈负电性的B原子形成一个负电中心,而其他B原子和Mg原子通常处在端位,且显正电性;团簇中通常是B-B键和B-Mg键共存,极少出现Mg-Mg键, 关键词: mBn(m=1')" href="#">MgmBn(m=1 n=1-4)团簇 密度泛函理论 结构与性质  相似文献   

16.
基于密度泛函理论(Density Functional Theory,DFT),对中性硼化铝团簇AlBn(n=2~9)的几何结构、稳定性以及红外振动光谱进行了理论研究,讨论了他们的不同点及AlB4、AlB5、AlB6和AlB7的基态构型和相对稳定性.对于中性AlBn(n=2~9)基态构型,对比讨论了其失去[AlBn+(n=2~9)]和得到[AlBn-(n=2~9)]一个电子后化学键强度的变化、掺入铝原子的影响以及团簇几何结构的演化.计算结果表明:虽然掺入Al之后,团簇的稳定性差异变小,但是硼团簇和硼化铝团簇都趋向于形成平面、准平面结构以获得更大的稳定性;硼团簇的构型对硼化铝团簇的结构和稳定性起着决定性的作用;AlB3、AlB5和AlB8更稳定;红外光谱的振动模式倾向于B原子和对称性优先的趋势.  相似文献   

17.
Si3N4团簇结构与性质的密度泛函理论研究   总被引:8,自引:8,他引:0  
用杂化密度泛函B3LYP在6-31G*的水平上研究了Si3N4团簇可能结构的平衡几何构型和电子结构,得到了24个可能的异构体.Si3N4团簇的最稳定结构是由7个Si—N键和2个N—N键形成的3个四边形构成的三维结构.用自然键轨道方法(NBO)分析了成键性质,结果表明,Si—N键中的Si、N原子的净电荷较大,说明Si—N键中Si、N原子的相互作用主要是电相互作用.最强的IR和Raman峰分别位于1033.40 cm-1,473.63 cm-1处.并且讨论了最稳定结构的极化率和超极化率.  相似文献   

18.
用密度泛函理论(DFT)中的杂化密度泛函B3LYP方法,在6-31G(d)的水平上对Si6N2团簇的可能结构进行了几何结构优化和电子结构计算,得到了16个可能的异构体.Si6N2团簇的最稳定结构是有4个Si-N键和4个Si-Si键的三维结构.自然键轨道方法分析成键性质的结果表明,Si-N键中Si原子向N原子有较大的电荷转移,因此Si-N原子间有较强的电相互作用;最强的IR和Raman谱峰分别位于1359.14cm-1和1366.29cm-1处;并计算了Si6N2团簇的最稳定结构的极化率和超极化率.  相似文献   

19.
利用密度泛函理论中的B3LYP方法, 选择LANL2DZ基组优化Tin(2~7)团簇得到各团簇的稳定结构,然后对稳定结构的束缚能及自然轨道进行分析. 研究结果表明: Tin(n=2~7)团簇都依带帽的形式在前一个团簇的结构基础上加一个原子变化而来; 通过自然轨道分析发现, 团簇原子的轨道存在sp-d杂化, 有大约一个电子从4s转移到了3d, 原子之间亦存在电子转移, 而且除Ti7外, 团簇键长由最外层4d轨道电子和3d轨道共同决定, 在Ti7中, 团簇键长由3d轨道决定.  相似文献   

20.
采用密度泛函理论(density functional theory,DFT)中的广义梯度近似(generalized gradient approximation,GGA)分别对Al_(13)和MAl_(12)(M=Ni、Mn)四种初始结构的中性和一价阴离子团簇进行计算研究.发现中性和阴离子团簇的基态几何结构均保持I_h对称性,并且基态阴离子团簇还具有较高的运动学稳定性.电磁性质计算显示:基态的中性和阴离子NiAl_(12)团簇分别带有2_(μB)、3_(μB)的磁矩,Ni原子的磁性几乎完全淬灭;而MnAl_(12)团簇分别带有7_(μB)、6_(μB)的磁矩,Mn原子的磁矩主要由3d轨道提供.基态团簇的表面原子出现了自旋分裂,与中心原子呈现出铁磁性作用.对垂直电离能和垂直亲和能的分析表明:中心原子被替代之后,团簇的得电子能力和失电子能力都有所降低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号