首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Indium zinc oxide (IZO) thin films with different percentages of In content (In/[In+Zn]) are synthesized on glass substrates by magnetron sputtering, and the structural, electrical and optical properties of IZO thin films deposited at different In2O3 target powers are investigated. IZO thin films grown at different In2O3 target sputtering powers show evident morphological variation and different grain sizes. As the In2O3 sputtering power rises, the grain size becomes larger and electrical mobility increases. The film grown with an In2O3 target power of 100 W displays the highest electrical mobility of 13.5 cm·V-1·s-1 and the lowest resistivity of 2.4 × 10-3 Ω·cm. The average optical transmittance of the IZO thin film in the visible region reaches 80% and the band gap broadens with the increase of In2O3 target power, which is attributed to the increase in carrier concentration and is in accordance with Burstein-Moss shift theory.  相似文献   

2.
We present a systematic study of the structure, magnetization, resistivity, and Hall effect properties of pulsed laser deposited Fe- and Cu-codoped In2O3 and indium-tin-oxide (ITO) thin films. Both the films show a clear ferromagnetism and anomalous Hall effect at 300 K. The saturated magnetic moments are almost the same for the two samples, but their remanent moments Mr and coercive fields HC are quite different. Mr and HC values of ITO film are much smaller than that of In2O3. The ITO sample shows a typical semiconducting behavior in whole studied temperature range, while the In2O3 thin film is metallic in the temperature range between 147 and 285 K. Analysis of different conduction mechanisms suggest that charge carriers are not localized in the present films. The profile of the anomalous Hall effect vs. magnetic field was found to be identical to the magnetic hysteresis loops, indicating the possible intrinsic nature of ferromagnetism in the present samples.  相似文献   

3.
Top electrode (TE) material on the resistive switching behavior of (TE)/CuO/SnO2:F/Si substrate has been studied. We investigated the switching properties of CuO films deposited by sol-gel process. Two kinds of top electrode (TE) material on the resistive switching behaviors have been studied. The nonpolar and bipolar resistive switching phenomenon was observed in CuO thin films with different top electrodes. The filamentary mechanism was used to explain the two kinds of resistive switching behaviors. For the Pt/CuO/ATO device, it showed the nonpolar resistive switching where conducting path is formed and disappear due to the oxygen vacancy. For the Cu/CuO/ATO device, the resistance reduction is due to the existing Cu to form conduction Cu-rich pathways. An opposite bias takes the existing Cu back to the Cu electrode to its high-resistance state. CuO thin films are also observed by XRD, AFM and XPS.  相似文献   

4.
Transparent pure and Cu-doped (2.5, 5 and 10 at.%) anatase TiO2 thin films were grown by pulsed laser deposition technique on LaAlO3 substrates. The samples were structurally characterized by X-ray absorption spectroscopy and X-ray diffraction. The magnetic properties were measured using a SQUID. All films have a FM-like behaviour. In the case of the Cu-doped samples, the magnetic cycles are almost independent of the Cu concentration. Cu atoms are forming CuO and/or substituting Ti in TiO2. The thermal treatment in air promotes the CuO segregation. Since CuO is antiferromagnetic, the magnetic signals present in the films could be assigned to Cu substitutionally replacing cations in TiO2.  相似文献   

5.
Carbon-doped In2O3 thin films exhibiting ferromagnetism at room temperature were prepared on Si (100) substrates by the rf-magnetron co-sputtering technique. The effects of carbon concentration as well as oxygen atmosphere on the ferromagnetic property of the thin films were investigated. The saturated magnetizations of thin films varied from 1.23 to 4.86 emu/cm3 with different carbon concentrations. The ferromagnetic signal was found stronger in samples with higher oxygen vacancy concentrations. In addition, deposition temperature and different types of substrates also affect the ferromagnetic properties of carbon-doped In2O3 thin films. This may be related to the oxygen vacancies in the thin film system. The experiment suggests that oxygen vacancies play an important role in introducing ferromagnetism in thin films.  相似文献   

6.
Fabrication of cuprous and cupric oxide thin films by heat treatment   总被引:1,自引:0,他引:1  
Cuprous oxide (Cu2O) and cupric oxide (CuO) thin films were prepared by thermal oxidation of copper films coated on indium tin oxide (ITO) glass and non-alkaline glass substrates. The formation of Cu2O and CuO was controlled by varying oxidation conditions such as, oxygen partial pressure, heat treatment temperature, and oxidation time. The microstructure, crystal direction, and optical properties of copper oxide films were measured with X-ray diffraction, atomic force microscopy, and optical spectroscopy. The results indicated that the phase-pure Cu2O and CuO films were produced in the oxidation process. Optical transmittance and reflectance spectra of Cu2O and CuO clearly exhibited distinct characteristics related to their phases. The electrical properties indicated that these films formed ohmic contacts with Cu and ITO electrode materials. Multilayers of Cu2O/CuO were fabricated by choosing the oxidation sequence. The experimental results in this paper suggest that the thermal oxidation method can be employed to fabricate device quality Cu2O and CuO films that are up to 200–300 nm thick.  相似文献   

7.
N-doped CuCrO2 thin films were prepared by using radio frequency magnetron sputtering technique. The XRD and XPS measurements were used to confirm the existence of the N acceptors in CuCrO2 thin films. Hall measurements show the p-type conduction for all films. The electrical conductivity increases rapidly with the increase in N doping concentration, and the maximum of the electrical conductivity of 17 S cm−1 is achieved for the film deposited with 30 vol.% N2O, which is about three orders of magnitude higher than that of the undoped CuCrO2 thin film. Upon increasing the doping concentrations the band gaps of N-doped CuCrO2 thin films increase due to the Burstein-Moss shift.  相似文献   

8.
AC electroluminescence of ZnS: Cu, Cl, Mn thin films in the structure In2O3(Sn) - ZnS: Cu, Cl, Mn-SiOx Al was studied. Vacuum-evaporated films 0.5 to 2.0 μm thick, excited with sinusoidal voltage of 80–200 V and up to 2 kHz gave the luminance response fulfilling Alfrey-Taylor's relation. Thus the electroluminescence model, suggested by these authors for a ZnS monocrystal, can be applied also for ZnS thin films.  相似文献   

9.
The externally prepared black-coloured copper oxide (T? 700 K, PO2 ? 100 torr) on a Cu(100) surface is identified by electron spectroscopy as CuO. Compared to the red-coloured Cu(I) oxide (in situ oxidation at T ? 400 K, PO2 ? 0.5 torr, ~ 109 L), the He(I)- excited photoemisson from CuO reveals characteristic shake-up satellites 10–12 eV below EF and a broadened emission from overlapping oxygen-induced 2p and Cu 3d states. From the AES and ELS results, in correlation with the data from core electron spectroscopy, chemical shifts of Cu 2p, Cu 3s and Cu 3p in CuO to higher binding energy and decreases in binding energy of the oxygen-induced states were deduced. The unoccupied electron states of Cu at 5 and 7.5 eV above EF — postulated from the ELS results — are preserved in Cu2O and CuO compounds. Annealing of the Cu(II) oxide at 670 K is accompanied by decomposition into Cu2O due to the solid-state reaction following the scheme: 2CuO → 1/2 O2 + Cu2O.  相似文献   

10.
The effect heat treatment has on the electrotransport mechanisms in films of ZnO and In2O3, and in a multilayer (In2O3/ZnO)83 structure obtained via ion-beam sputtering, is studied. It is shown that there is a mechanism of weak electron localization in the In2O3 and (In2O3/ZnO)83 samples. The relaxation processes that occur during the heat treatment of In2O3 films are found to increase the length of elastic electron scattering, but to reduce this parameter in multilayer heterostructures.  相似文献   

11.
Various conduction mechanisms in thin SiO2, Al2O3, In2O3 layers were investigated experimentally by analyzing the behavior of the current as a function of field strength and temperature. The films were obtained by pyrolytic dissociation of organic compounds in the vapor phase.The author is indebted to P. S. Kireev for guidance, and to M. I. Elinson and V. B. Sandomirskii for interest in the investigation.  相似文献   

12.
Improved techniques have been used to prepare thin films of Cu, CuO, Cu2O and Cu2S for x-ray photoelectron spectral analysis. The Cu 2p and Cu LMM Auger spectra have been obtained. Photoelectron and Auger chemical shifts as well as qualitative spectral features are found to be useful diagnostics for valence-state characterization of unknowns.  相似文献   

13.
Laser-ablated Co-doped In2O3 thin films were fabricated under various growth conditions on R-cut Al2O3 and MgO substrates. All Co:In2O3 films are well-crystallized, single phase, and room temperature ferromagnetic. Co atoms were well substituted for In atoms, and their distribution is greatly uniform over the whole thickness of the films. Films grown at 550 °C showed the largest magnetic moment of about 0.5 μB/Co, while films grown at higher temperatures have magnetic moments of one order smaller. The observed ferromagnetism above room temperature in Co:In2O3 thin films has confirmed that doping few percent of magnetic elements such as Co into In2O3 could result in a promising magnetic material.  相似文献   

14.
《Current Applied Physics》2015,15(11):1337-1341
The chemical states of ternary post-transition metal oxide thin films of InGaO, GaZnO and InZnO were investigated using X-ray photoelectron spectroscopy. Detailed binding energy (BE) analyses revealed certain evolution in chemistry in the ternary oxides compared to the reference binary oxides of In2O3, ZnO, or Ga2O3. In particular, O 1s BEs were changed with the compositions, which suggests that the charge transfer (CT) between In3+/Ga3+/Zn2+ and O2− ions is significant. Results of extended X-ray absorption fine structure analyses further showed that the first shell coordination (cation–O bond) is roughly maintained even though the ternary oxide films were structurally disordered. This implies that the CT process via O2− ions can influence the charge reconstructions in the ternary oxide systems.  相似文献   

15.
The new precursor of Cu–Zn–Sn–O (CZTO) was proposed for Cu2ZnSnS4 (CZTS) thin film fabrication to improve film morphology. The CZTS thin film grown from Cu–Zn–Sn (CZT) precursors has many bumps. We deposited CZTO precursors on Mo/soda-lime glass (SLG) substrates by RF sputtering using a CZT (Cu:Zn:Sn = 2:1:1) target in Ar and O2 atmosphere at various O2 partial pressures (0%, 5%, 17% and 20%). Subsequently, the CZTO precursors were sulfurized in Ar and S atmosphere to fabricate CZTS thin films. The CZTO precursors were amorphous. The morphology of the CZTS thin films was improved by the CZTO precursors. All of the CZTS films fabricated in this study had the same crystal structure. Composition analysis revealed that 50% of O were detected in the CZTO precursor, but O was not detected after sulfurizing process, indicating that O was substituted by S. The CZTS thin film from the CZTO precursor fabricated at O2 partial pressure of 20% had similar composition for solar cell absorber.  相似文献   

16.
Copper oxide (CuOx) thin films were produced by spin-coating and electrodeposition methods, and their microstructures and photovoltaic properties were investigated. Thin film solar cells based on the Cu2O/C60 and CuO/C60 heterojunction or bulk heterojunction structures were fabricated on F-doped or In-doped SnO2, which showed photovoltaic activity under air mass 1.5 simulated sunlight conditions. Microstructures of the CuOx thin films were examined by X-ray diffraction and transmission electron microscopy, which indicated the presence of Cu2O and CuO nanoparticles. The energy levels of the present solar cells were also discussed.  相似文献   

17.
An aqueous solution of cupric nitrate trihydrate (Cu(NO3)2·3H2O) modified with cetyltrimetylammonium bromide (CTAB) is used to deposit CuO films on glass substrate by chemical spray pyrolysis technique. The thermal analysis shows that the dried CTAB doped precursor decomposes by an exothermic reaction and suggests that minimum substrate temperature for film deposition should be greater than 270 °C. X-ray diffraction (XRD) studies indicate the formation of monoclinic CuO with preferential orientation along (0 0 2) plane for all film samples. The CTAB used as cationic surfactant in precursor results in the suppression of grain growth in films along the (1 1 0), (0 2 0) and (2 2 0) crystal planes of CuO. Surfactant modified films showed an increase in crystallite size of 14 nm at substrate temperature of 300 °C. The scanning electron micrographs (FESEM) confirm the uniform distribution of facets like grains on the entire area of substrate. CTAB modified films show a significant reduction in the particle agglomeration. Electrical studies of the CuO films deposited at substrate temperature of 300 °C with and without surfactant reveal that the CTAB doping increase the activation energy of conduction by 0.217 eV and room temperature response to ammonia by 9%. The kinetics of the ammonia gas adsorption on the film surface follows the Elovich and Diffusion models.  相似文献   

18.
Present paper reports the synthesis, electrical and optical properties of p-type conducting and transparent silver indium oxide (AIO) thin films prepared on glass substrates by reactive electron beam evaporation technique at three substrate temperatures (50, 200 and 250 °C) and at five evaporation rates (0.05 to 16.0 nm/s). The source material is pure powders of Ag2O:In2O3=50:50 mol%. The AIO films are amorphous. The films, though not corresponding to Delafossite crystal structure, exhibit p-type conductivity, when prepared at an evaporation rate of 0.05 nm/s at all the three substrate temperatures. With increasing filament current, it is observed that (i) the electrical resistivity decreases and (ii) the refractive index of the films (at 632.8 nm, and is in the range: 1.219-1.211) decreases. The work function (effective Fermi level) has been measured on these samples by Kelvin Probe method. The results are explained on the basis of partial ionic charge and localization of covalent bonds in the AIO thin films.  相似文献   

19.
Multiferroic thin films with the general formula TiO2/BiFe1−xMnxO3 (x=0.00, 0.05, 0.10 and 0.15) (TiO2/BFMO) were synthesized on Au/Ti/SiO2/Si substrates using a chemical solution deposition (CSD) method assisted with magnetron sputtering. X-ray diffraction analysis shows the thin films contained perovskite structures with random orientations. Compared with BFMO films, the leakage current density of the TiO2/BFMO thin films was found to be lower by nearly two orders of magnitude, and the remnant polarizations were increased by nearly ten times. The enhanced ferroelectric properties may be attributed to the lower leakage current caused by the introduction of the TiO2 layer. The J-E characteristics indicated that the main conduction mechanism for the TiO2/BFMO thin film was trap-free Ohmic conduction over a wide range of electric fields (0-500 kV/cm). In addition, ferromagnetism was observed in the Mn doped BFO thin films at room temperature. The origin of ferromagnetism is related to the competition between distortion of structure and decrease of grain size and decreasing net magnetic moment in films due to Mn doping.  相似文献   

20.
Transparent conductive In2O3 films were deposited by reactive evaporation of In and analyzed in-situ with photoelectron spectroscopy. The interface formation of In2O3 with evaporated CdTe has been investigated using the same technique. A valence band offset ΔEVB=2.1±0.1 eV is determined, resulting in a negligible conduction band offset. However, In2O3 will not provide an Ohmic contact to n-CdTe, due to the Fermi level position at the interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号