首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We report the existence of chaotic itinerancy in a coupled Milnor attractor system. The attractor ruins consist of tori or local chaos generated from the original Milnor attractors. The chaotic behavior exhibited by a single orbit can be considered a "nonstationary" state, due to the extremely slow convergence of the Lyapunov exponents, but the behavior averaged over randomly chosen initial conditions is consistent with the limit theorem. We present as a possibly new indication of chaotic itinerancy the presence of slow decay of large fluctuations of the largest Lyapunov exponent.  相似文献   

2.
We show that chaotic bursting activity observed in coupled neural oscillators is a kind of chaotic itinerancy. In neuronal systems with phase deformation along the trajectory, diffusive coupling induces a dephasing effect. Because of this effect, an antiphase synchronized solution is stable for weak coupling, while an in-phase solution is stable for very strong coupling. For intermediate coupling, a chaotic bursting activity is generated. It is a mixture of three different states: an antiphase firing state, an in-phase firing state, and a nonfiring resting state. As we construct numerically the deformed torus manifold underlying the chaotic bursting state, it is shown that the three unstable states are connected to give rise to a global chaotic itinerancy structure. Thus we claim that chaotic itinerancy provides an alternative route to chaos via torus breakdown.  相似文献   

3.
The electronic structure and magnetic properties of the Co at the Co/X (X=Co, Cu, V and Ta) interfaces have been studied by first-principle discrete variational method. We have found that the spin asymmetry and the s-electron itinerancy of the Co interface layer in the Co/X systems are strongly dependent on the electronegativity of the non-magnetic layers. A large difference in the electronegativity between the non-magnetic and Co layers is unfavorable both for s-electron itinerancy and for the spin exchange split of DOS at the Fermi level. Further study on charge density has revealed that a bond is formed across the Co/V and Co/Ta interfaces.  相似文献   

4.
We argue that chaotic itinerancy in interaction between humans originates in the fluctuation of predictions provided by the nonconvergent nature of learning dynamics. A simple simulation model called the coupled dynamical recognizer is proposed to study this phenomenon. Daily cognitive phenomena provide many examples of chaotic itinerancy, such as turn taking in conversation. It is therefore an interesting problem to bridge two chaotic itinerant phenomena. A clue to solving this is the fluctuation of prediction, which can be translated as "hot prediction" in the context of cognitive theory. Hot prediction is simply defined as a prediction based on an unstable model. If this approach is correct, the present simulation will reveal some dynamic characteristics of cognitive interactions.  相似文献   

5.
Previously, I studied [Physica D 82, 180-194 (1995)] the emergence and collapse of money in a computer simulation model. In this paper I will revisit the same topic, building a model in the same line. I discuss this problem from the viewpoint of chaotic itinerancy. Money is the most popular system for evading the difficulty of exchange under division of labor. It emerges autonomously from exchanges among selfish agents which behave as automata. And such emergent money collapses autonomously. I describe money as a structure in economic space, explaining its autonomous emergence and collapse as two phases of the same phenomenon. The key element in this phenomenon is the switch of the meaning of strategies. This is caused by the drastic change of environment caused by the emergence of a structure. This dynamics shares some aspects with chaotic itinerancy.  相似文献   

6.
We studied the antiphase self-pulsation in a globally coupled three-mode laser operating in different optical spectrum configurations. We observed locking of modal pulsation frequencies, quasiperiodicity, clustering behaviors, and chaos, resulting from the nonlinear interaction among modes. The robustness of [p:q:r] three-frequency locking states and quasiperiodic oscillations against residual noise has been examined by using joint time-frequency analysis of long-term experimental time series. Two sharply antithetical types of switching behaviors among different dynamic states were observed during temporal evolutions; noise-driven switching and self-induced switching, which manifests itself in chaotic itinerancy. The modal interplay behind observed behaviors was studied by using the statistical dynamic quantity of the information circulation. Well-organized information flows among modes, which correspond to the number of degeneracies of modal pulsation frequencies, were found to be established in accordance with the inherent antiphase dynamics. Observed locking behaviors, quasiperiodic motions, and chaotic itinerancy were reproduced by numerical simulation of the model equations.  相似文献   

7.
The present paper studies regular and complex spatiotemporal behaviors in networks of coupled map-based bursting oscillators. In-phase and antiphase synchronization of bursts are studied, explaining their underlying mechanisms in order to determine how network parameters separate them. Conditions for emergent bursting in the coupled system are derived from our analysis. In the region of emergence, patterns of chaotic transitions between synchronization and propagation of bursts are found. We show that they consist of transient standing and rotating waves induced by symmetry-breaking bifurcations, and can be viewed as a manifestation of the phenomenon of chaotic itinerancy.  相似文献   

8.
We study a multimode semiconductor laser subject to a moderate optical feedback. The steady state is destabilized by either a simple Hopf bifurcation leading to in phase dynamics or by a degenerate Hopf bifurcation leading to antiphase dynamics. The degenerate bifurcation is also a source of multiple coexisting attractors. We show that a simple interpretation of the low frequency fluctuations in the multimode regime is provided by a chaotic itinerancy among the many coexisting unstable attractors produced by the degenerate Hopf bifurcation.  相似文献   

9.
A general methodology is described for constructing systems that have a slowly converging Lyapunov exponent near zero, based on one-dimensional maps with chaotic attractors. In certain parameter ranges, these relatively simple systems display the properties of intermittent dynamics known as chaotic itinerancy. We show that in addition to the local sensitivity characteristic of chaotic dynamics, these itinerant systems display a global sensitivity, in the sense that fine-scale additive noise may significantly change the natural measure on the large scale.  相似文献   

10.
A formalism is proposed to investigate quantum dynamics of localized states involving highly non-adiabatic time-evolution of electron-lattice systems. The effect of electron itinerancy is projected onto the dynamics of local variables through an integral kernel of Volterra's integral equation. The method is applied to the problem of thermal emission of carriers at deep level centers in semiconductors. It is shown that the real situation is in the adiabatic limit, and the probability of thermal emission of the trapped carriers is one per a single lattice oscillation, if the amplitude of the oscillation exceeds a critical value but zero if not.  相似文献   

11.
Kay LM 《Chaos (Woodbury, N.Y.)》2003,13(3):1057-1066
Brain hermeneutics and chaotic itinerancy proposed by Tsuda are attractive characterizations of perceptual dynamics in the mammalian olfactory system. This theory proposes that perception occurs at the interface between itinerant neural representation and interaction with the environment. Quantifiable application of these dynamics has been hampered by the lack of definable history and action processes which characterize the changes induced by behavioral state, attention, and learning. Local field potentials measured from several brain areas were used to characterize dynamic activity patterns for their use as representations of history and action processes. The signals were recorded from olfactory areas (olfactory bulb, OB, and pyriform cortex) and hippocampal areas (entorhinal cortex and dentate gyrus, DG) in the brains of rats. During odor-guided behavior the system shows dynamics at three temporal scales. Short time-scale changes are system-wide and can occur in the space of a single sniff. They are predictable, associated with learned shifts in behavioral state and occur periodically on the scale of the intertrial interval. These changes occupy the theta (2-12 Hz), beta (15-30 Hz), and gamma (40-100 Hz) frequency bands within and between all areas. Medium time-scale changes occur relatively unpredictably, manifesting in these data as alterations in connection strength between the OB and DG. These changes are strongly correlated with performance in associated trial blocks (5-10 min) and may be due to fluctuations in attention, mood, or amount of reward received. Long time-scale changes are likely related to learning or decline due to aging or disease. These may be modeled as slow monotonic processes that occur within or across days or even weeks or years. The folding of different time scales is proposed as a mechanism for chaotic itinerancy, represented by dynamic processes instead of static connection strengths. Thus, the individual maintains continuity of experience within the stability of fast periodic and slow monotonic processes, while medium scale events alter experience and performance dramatically but temporarily. These processes together with as yet to be determined action effects from motor system feedback are proposed as an instantiation of brain hermeneutics and chaotic itinerancy.  相似文献   

12.
Electronic structure calculations were performed for ZnV2O4, a material close to a metal-insulator transition. Structural optimization leads to the formation of V-V dimers along the off-plane chains. A strong spin-lattice coupling is expected close to the transition to itinerancy. No orbital ordering is observed in such a structure, and the experimentally found magnetic structure is naturally explained.  相似文献   

13.
目前已经发现的绝大部分铁基超导体都是通过化学掺杂而得到的。铁基超导体的母体一般在200K以下经历自旋密度波(SDW)转变:即其基态是一类巡游电子反铁磁不良导体。通过适当的元素替代可以在FeAs层产生额外的电子、空穴、巡游性或化学压力,从而有效地抑制SDW序,实现超导电性。本文侧重作者所在小组的相关研究结果,将铁基超导体中的元素替代研究分为FeAs层外和FeAs层内掺杂两大类,依次介绍和评述两年来国际上对4种主要铁基化合物中的化学掺杂研究进展。  相似文献   

14.
Chaotic itinerancy (CI), which is defined as an incessant spontaneous switching phenomenon among attractor ruins in deterministic dynamical systems without Lyapunov functions, is numerically studied in the case of an oscillator neural network model. The model is the pseudoinverse-matrix version of the previous model [S. Uchiyama and H. Fujisaka, Phys. Rev. E 65, 061912 (2002)] that was studied theoretically with the aid of statistical neurodynamics. It is found that CI in neural nets can be understood as the intermittent dynamics of weakly destabilized chaotic retrieval solutions.  相似文献   

15.
The observation of charge stripe order in the doped nickelate and cuprate materials has motivated much theoretical effort to understand the underlying mechanism of the stripe phase. Numerical studies of the Hubbard model show two possibilities: (i) stripe order arises from a tendency toward phase separation and its competition with the long-range Coulomb interaction or (ii) stripe order inherently arises as a compromise between itinerancy and magnetic interactions. Here we determine the restricted phase diagram of the two-dimensional Falicov-Kimball model and see that it displays rich behavior illustrating both possibilities in different regions.  相似文献   

16.
We propose some schemes for remote preparation of arbitrary high-dimensional equatorial entangled state via a single bipartite high-dimensional entangled state as quantum channel. We firstly present the remote preparation of bipartite three- and d-dimensional equatorial entangled state by using a single entangled qutrit and qudit pair, respectively, and then directly generalize the schemes to multipartite case. The cases of the quantum channel being non-maximally two-qutrit and two-qudit entangled state are also considered, respectively. In these schemes the required resources are single-particle projective measurement dimensional C-NOT operation. It is shown that the greatly reduced in our schemes. appropriate local unitary operation, auxiliary particle, and highentanglement resource and classical communication cost are both  相似文献   

17.
My objective of this study was to find evidence of chaotic itinerancy in human brains by means of noninvasive recording of the electroencephalogram (EEG) from the scalp of normal subjects. My premise was that chaotic itinerancy occurs in sequences of cortical states marked by state transitions that appear as temporal discontinuities in neural activity patterns. I based my study on unprecedented advances in spatial and temporal resolution of the phase of oscillations in scalp EEG. The spatial resolution was enhanced by use of a high-density curvilinear array of 64 electrodes, 189 mm in length, with 3 mm spacing. The temporal resolution was advanced to the limit provided by the digitizing step, here 5 ms, by use of the Hilbert transform. The numerical derivative of the analytic phase revealed plateaus in phase that lasted on the order of 0.1 s and repeated at rates in the theta (3-7 Hz) or alpha (7-12 Hz) ranges. The plateaus were bracketed by sudden jumps in phase that usually took place within 1 to 2 digitizing steps. The jumps were commonly synchronized in each cerebral hemisphere over distances of up to 189 mm, irrespective of the orientation of the array. The jumps were usually not synchronized across the midline separating the hemisphere or across the sulcus between the frontal and parietal lobes. I believe that the widespread synchrony of the jumps in analytic phase manifest a metastable cortical state in accord with the theory of self-organized criticality. The jumps appear to be subcritical bifurcations. They reflect the aperiodic evolution of brain states through sequences of attractors that on access support the experience of remembering.  相似文献   

18.
<正>We find that the superconductivity in the thin films of the formerly believed non-superconducting parent compound FeTe is accompanied by an emergence of second order with a correlation length of 742 nm and 258 nm at 10 K and 300 K,respectively.The structural phase transition found in iron pnictide superconductors,in non-superconducting FeTe bulk samples,and in FeSe superconducting thin films is not observed in the superconducting FeTe thin films.The interplay between superconductivity and long range order may suggest the crucial role of competition between electronic localization and itinerancy which leads to strong quantum fluctuations in the FeTe system.  相似文献   

19.
DNA分子能带结构与电子态研究   总被引:1,自引:0,他引:1       下载免费PDF全文
宋骏  陈雷  刘德胜  解士杰 《物理学报》2004,53(8):2792-2795
DNA分子链内的巡游电子数与其结构和位形密切相关,可变的电子数会导致这类软物质费米面处能带结构的变化.在紧束缚近似下,计入电子 晶格的相互作用,计算了DNA分子不同巡游电子数下的能带结构及态密度,对碱基对不同排列情况下DNA分子可能的电属性进行了讨论. 关键词: DNA 态密度 电晶相互作用  相似文献   

20.
We investigate the entanglement of formation for a class of high-dimensional quantum mixed states. We present a kind of generalized concurrence for a class of high-dimensional quantum pure states such that the entanglement of formation is a monotonically increasing convex function of the generallzed concurrence, from the monotonicity and convexity the entanglement of formafion for a class of high-dimensional mixed states has been calculated analytically,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号