首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A museum sample of perthitic feldspar was used to study the production of post-IR IRSL signals. It was found that traps responsible for low temperature (∼230 °C) TL peaks play an unexpectedly important role in post-IR IRSL production. During the production of the IRSL signal during low temperature IR stimulation (100 °C), electrons are optically transferred from IRSL traps into these TL traps which have been emptied by the preceding preheat at 320 °C. Subsequent heating to 300 °C causes thermal transfer of these electrons from these traps back into previously emptied IRSL traps which are related to the high temperature TL peaks. IR stimulation of these electrons results in post-IR IRSL. Thus the initial source of the post-IR IRSL signal is the same as the IRSL signal, with a role being played by intermediate traps that give rise to TL signals between 200 and 250 °C, and the final source is similar to that of the IRSL signal. Therefore the post-IR IRSL signal is a by-product of the production of the IRSL signal. It was also found that post-IR IRSL production with high post-IR IR stimulation temperatures (e.g. >230 °C) additionally includes a small contribution from the post-IR isothermal decay of high temperature TL peaks that are not sensitive to IR stimulation at low stimulation temperatures.  相似文献   

2.
Using a museum specimen of perthitic feldspar, the characteristics of post-IR IRSL production at 200 °C after different prior IR bleaching at 100 °C were investigated. It was found that the post-IR IRSL signal had an isothermal TL contribution that was unexpected following a previous preheat at 320 °C; this is the result of isothermal decay of recuperated TL peaks resulting from photo-transfer that occurred when the previous IRSL signal was measured at a lower temperature. The isothermal TL contribution to the post-IR IRSL signal depends on prior IR bleaching conditions. Since the recuperated TL signal comes from photo-transfer during IRSL production, this signal should also suffer from anomalous fading. Thus, it is suggested that this isothermal TL contribution to the measured post-IR IRSL is removed by the inclusion of an additional step, a cut-heat to 300 °C, in the post-IR IRSL dating protocol.  相似文献   

3.
Recent post-IR IRSL (pIRIR) dating studies using polymineral fine grains assumed that the a-values obtained for the IRSL signal at 50 °C and the pIRIR signal at higher temperatures (e.g. 225 °C) are identical. However, the a-value of a sample depends on the stimulation method, and the assumption mentioned above remains to be tested. Using five polymineral fine grain samples, this study investigates whether a common a-value can be used for both the IR and the pIRIR signals. Applying the pIRIR protocol, the a-values were measured with three different methods of signal resetting (optical bleaching, end of SAR cycle, heating). In addition, uncorrected α- and β-irradiation induced growth curves were determined for three samples and fitted with single saturating exponential functions. For the investigated samples we found significant mean differences, 0.023 ± 0.012 and higher, in the a-values determined for the IR50 and pIRIR225 signals. Synthetic a-values deduced from uncorrected multiple-aliquot dose response curves seem to confirm this observation. Although, in summary, our results indicate that the practice of using a common a-value should be carefully re-considered, the physical reasons remain to be determined.  相似文献   

4.
The elevated temperature infrared stimulated luminescence (IRSL) and post-IR IRSL signals of potassium (K)-feldspars have recently garnered attention for their minimal rates of anomalous fading. The post-IR IRSL signal has been used to obtain age estimates for geological deposits, mostly in Europe. Studies on the behaviour of the IRSL and post-IR IRSL signals of K-feldspars from a wider range of geographic regions and depositional contexts are needed, particularly for regions where the OSL signal from quartz is poorly behaved. Discrepancies in the literature regarding the behaviours of the IRSL and TL signals of K-feldspars also highlight the need to characterise the behaviours of samples from a wide variety of contexts. This paper begins to address this problem by characterising and comparing the IRSL signals of a metamorphic and a volcanic K-feldspar sample from two sites in East Africa, a region in which the OSL signal from quartz has generally proven problematic for dating. We demonstrate that the metamorphic and volcanic K-feldspars have substantially different TL glow curves that respond differently to IR stimulation. The sample of metamorphic K-feldspar from Tanzania (MR9) has a peak at 430 °C that is associated with the IRSL signal and an optically less-sensitive peak at 350 °C, while the sample of volcanic K-feldspar from Ethiopia (MB3) exhibits a single broad TL region centred at ~230 °C that responds differently to IR stimulation. Differences in the change of IRSL decay curve shape with stimulation temperature suggest that the processes of IRSL production many vary between the two samples. Using dose recovery tests, we demonstrate that the IRSL (50 °C), IRSL (225 °C) and post-IR IRSL (50 °C, 225 °C) signals of sample MR9 are suitable for dose and age estimation using the single-aliquot regenerative-dose procedure, while those of sample MB3 are less suitable. The post-IR IRSL signal of the latter sample performs poorly in tests of SAR suitability and the three signals exhibit extremely high fading rates over laboratory timescales (g2days > 19%/decade).  相似文献   

5.
Various optically stimulated luminescence signals from K-feldspar have been used to determine the equivalent doses of sediment samples. Understanding the properties of these optical signals is critical to evaluate their applicability and limitations to optical dating. In this paper, some properties of IRSL, post-IR OSL and post-IR IRSL signals (detected in the UV region using U-340 filters) from a museum sample of K-feldspar were investigated by analyzing the relationships between optical and TL signals, and the effect of optical bleaching and heating on optical signals. The trap parameters of the different optical signals were calculated using the pulse annealing method. The results show that this sample exhibits two regenerated TL peaks at ~140 and ~330 °C. Corresponding to the low temperature TL peak, the OSL and post-IR OSL signals appear to be more associated with lower temperature TL than the IRSL signal measured at 50 °C. Corresponding to the high temperature TL peak, the post-IR IRSL signals mainly originate from the more thermally stable traps associated with the high temperature TL, compared with the IRSL and post-IR OSL signals. However, the post-IR IRSL225 °C signal is shown to be hard to be bleached by blue light and simulated sunlight, compared with the IRSL50 °C and low temperature post-IR IRSL signals. The implication for optical dating is that the elevated temperature post-IR IRSL signals can be preferentially applied over other signals from K-feldspar, but it is desirable that the effectiveness of the pre-depositional zeroing of these signals is assessed.  相似文献   

6.
Post-IR IRSL (pIRIR) signals from K-feldspar grains measured at elevated temperatures are increasingly being used for dating sediments. Unfortunately the pIRIR signal from K-feldspars bleaches more slowly than other signals (e.g. OSL from quartz) upon exposure to daylight, leading to concerns about residual signals remaining at deposition. However, earlier studies have not assessed whether the pIRIR signal bleaches at the same rate in all feldspar grains. In this study laboratory bleaching experiments have been conducted and for the first time the results show that the rate at which the pIRIR signal from individual K-feldspar grains bleach varies. To determine whether grain-to-grain variability in bleaching rate has a dominant control on equivalent dose (De) distributions determined using single grains, analysis was undertaken on three samples with independent age control from different depositional environments (two aeolian and one glaciofluvial). The De value determined from each grain was compared with the rate at which the pIRIR225 signal from the grain bleaches. The bleaching rate of each grain was assessed by giving a 52 Gy dose and measuring the residual De after bleaching for an hour in a solar simulator. There is no clear relationship between the rate at which the pIRIR225 signal of an individual grain bleaches and the magnitude of its De. It is concluded that variability in the bleaching rate of the pIRIR225 signal from one grain to another does not appear to be a dominant control on single grain De distributions.  相似文献   

7.
Concern over anomalous fading has been the biggest single factor responsible for deterring the widespread use of the infra-red stimulated luminescence (IRSL) or thermoluminescence (TL) signal from feldspars for luminescence dating. There has therefore been great interest in the use of the recently proposed Post-IR IRSL signal, because it has been shown to significantly reduce the degree of anomalous fading observed in feldspars and therefore potentially provides a means of circumventing the issue. This study undertakes a systematic investigation into various preheat and Post-IR IRSL measurement conditions proposed in the literature, by using two samples from the Halfway House loess section in Alaska which bracket the Old Crow tephra which has been dated using fission track methods. Preheat plateau tests show a dramatic change in equivalent dose with Post-IR IRSL measurement conditions, and further tests reveal that these changes are driven by preheat temperature rather than Post-IR IR stimulation temperature. Dose recovery tests on laboratory-bleached material mimic the findings of the natural preheat plateau test data, and sensitivity change between the first and second Single Aliquot Regenerative dose (SAR) measurement cycle is found to be responsible. Comparison of the Post-IR IRSL ages with the independent age control shows that, for the samples in this study, the Post-IR IR signal stimulated at 290 °C is inappropriate for dating. However, use of lower preheat (250–300 °C) and Post-IR IR stimulation temperatures from 225 to 270 °C gave rise to ages which were in agreement with the independent age control.  相似文献   

8.
The post-IR IRSL protocol with single K-feldspar grains was applied to three samples taken from a fluvial sedimentary sequence at the archaeological site of the Dali Man, Shaanxi Province, China. K-feldspar coarse grains were extracted for measurement. Approximately 30–40% of the grains were sufficiently bright to measure, and after application of rejection criteria based on signal strength, recuperation, recycling ratio and saturation dose, ~10–15% of the grains were used for De calculation. The relationship of signal decay rate and form of De(t) with the recovery dose were investigated. The dose recovery ratios of the samples after initial bleaching with the four different light sources were within uncertainties of unity. No anomalous fading was observed. The over-dispersion of the recovered dose and De values were similar, suggesting neither incomplete resetting of the post-IR IRSL signals nor spatially heterogeneous dose rates significantly affected the natural dose estimates. The values of De obtained with the single K-feldspar grain post-IR IRSL protocol were in the range ~400–490 Gy. Combining all of the measured single-grain signals for each of the individual samples (into a ‘synthetic single aliquot’) increased the De estimates to the range ~700–900 Gy, suggesting that the grains screened-out by the rejection criteria may have the potential to cause palaeodose over-estimation, although this finding requires a more extensive investigation. Thermally transferred signals were found in the single K-feldspar grains post-IR IRSL protocol, and the proportion of thermally transferred signal to test-dose OSL signal (stimulation at 290 °C) from the natural dose was higher than from regenerative doses, and the proportion was grain- and dose-dependent. As such, TT-post-IR IRSL signals at 290 °C have the potential to cause dose underestimation, although this may be reduced by using larger test-dose irradiations. Our study demonstrates considerable potential in the post-IR IRSL method in providing chronological control in studies relevant to human evolution in the later-Pleistocene.  相似文献   

9.
Laboratory storage and preheating experiments were carried out to study anomalous fading of infrared stimulated luminescence (IRSL) signals derived from polymineral grains extracted from Chinese loess. Results of laboratory storage at 150 °C and higher temperature preheating experiments showed that such thermal treatments could lessen the effect of fading and indicated the presence of both thermal and non-thermal fading. In addition, the behavior of natural fading over the past 9–170 ka was investigated. By comparing with independent ages (obtained from fine-grain quartz using the optically stimulated luminescence (OSL) signal for the past 130 ka and the thermally transferred OSL (TT-OSL) signal in the age range of 130–170 ka) for the same samples, equivalent doses obtained from the IRSL signals were found to be underestimated by different amounts since the penultimate glacial; there was a linear dependence when the age underestimation was plotted against geological time.  相似文献   

10.
It has frequently been observed that certain roof tiles and bricks, especially from relatively modern European buildings, do not contain enough quartz grains in a suitable grain size range to permit dose reconstruction using thermoluminescence (TL) or optically stimulated luminescence (OSL) methods. In this paper the feasibility of using infrared-stimulated luminescence (IRSL) on the feldspar fraction of such bricks and tiles has been investigated. Appropriate preheating treatments were employed in order to select the most stable signals, and procedures were developed to enhance the signal to noise ratio. The possible effect of anomalous fading under application of these procedures was tested. In the dose range above 100 mGy, it has been demonstrated that using IRSL on the feldspar fraction of such material provides a feasible alternative to the use of green-light-stimulated luminescence (GLSL) on the quartz fraction, for the purposes of retrospective dosimetry. Furthermore, since the use of IRSL as described in this paper involves the measurement of polymineral fine grain fractions of bricks, a technique for the calibration of the built-in β source against the γ source in Secondary Standard Dosimetry facilities for routine use of the technique is described.  相似文献   

11.
In the past, time-resolved IR stimulated luminescence (TR-IRSL) curves from feldspar have mainly been measured over a few hundred μs with the purpose of estimating the lifetimes of the components. In this study, we present the decay form of time-resolved IRSL and IR stimulated phosphorescence (IRSP) from orthoclase feldspar covering over 8 orders of magnitude (50 ns to ~7 s). A detailed characterisation of the slowly decaying signals (ms to s time scales) from feldspar is undertaken to obtain further insight into the role of re-trapping in both the IR stimulated luminescence (IRSL) and the relatively more stable post-IR IRSL signals. The decay form of the different signals examined here shows a weak dependence on preheat temperature and a strong dependence on stimulation temperature. Interestingly, the IRSP curves show a conspicuous kink of which the position is linearly dependent on the on-time duration.The data on thermal dependence of these signals might suggest that the decay behaviour of the time-resolved IRSL and phosphorescence signals mainly reflect the occupancy of electrons in the band tail states with a significant contribution from the shallow traps. This interpretation is supported by thermoluminescence (TL) curves showing the photo-transfer effect during short IR and post-IR IR stimulations.  相似文献   

12.
Yellow stimulated luminescence (Y-OSL) is the light detected from potassium-rich feldspars at 410 nm under stimulation by a yellow light source emitting 590 nm. The investigation of this study aimed at understanding basic luminescence physics of Y-OSL in order to assess the suitability of the technique for dating. The Y-OSL signal properties tested were signal intensity, thermal assistance, thermal stability, sensitivity to daylight and the suitability of a single aliquot regenerative (SAR) protocol to be employed for equivalent dose (De) estimation. De measurements were conducted on samples of Holocene, last glacial and Tertiary age. The tests were undertaken on sedimentary feldspar separates extracted from aeolian, fluvial and coastal deposits.Results from experiments show that the signal intensity increases by measuring Y-OSL at elevated temperature suggesting thermal assistance characteristics similar to infrared stimulated luminescence (IRSL). The yellow stimulated signal remains unaffected by preheat temperatures up to ~200 °C suggesting higher thermal stability than the IRSL signal. The Y-OSL signal is less light sensitive than the IRSL signal and De residuals obtained from modern samples are up to 7 Gy indicating suitability of the technique for ‘older’ and well-bleached sediments. The dose recovery tests successfully recovered the given dose if the specific light sensitivity of Y-OSL is taken into account. For every sample Y-OSL De values obtained by a single aliquot regenerative dose protocol (SAR) are higher than those obtained by an IRSL SAR approach. From these results we infer high thermal stability and a minimal anomalous fading of the Y-OSL signal. We conclude that Y-OSL has a high potential to date Quaternary sediments that were sufficiently bleached in nature.  相似文献   

13.
The purpose of the present study is to identify the effect of the increasing temperature IR stimulation to the component-resolved OSL luminescence signal of mixed quartz-feldspars material. Post IR OSL signals measured at 110 °C were analysed via only general order kinetic terms, while IR signals obtained at increasing temperatures were de-convolved using the sum of general order kinetics plus a tunnelling component. By increasing stimulation temperature, it was demonstrated that IRSL at temperatures above 50 °C does not only stimulate feldspar but also stimulates both fast and medium quartz OSL components. In the temperature range between 175 and 250 °C, the IRSL initial intensity is dominated by the fast OSL component. Estimated equivalent doses using either Post-IR175.OSL110 as well as IRSL175 (with the indices indicating the measurement temperature) are in good agreement between each other, due to both stimulating quartz. Finally, the physical meaningfulness of the fitting parameters for the tunnelling component is also discussed.  相似文献   

14.
Feldspars form a solid-solution series whereby the K-content may range from 0 to 14%. LA-ICP-MS measurements for density-separated single-grains of feldspar yielded realistic concentrations of K within the range of those naturally occurring, and also highlighted the difficulty in isolating the pure end members during density-separation. No direct relationship was found between the thermal stability of the infrared-stimulated luminescence (IRSL) signal and measured K-content of individual grains. However, the brightest IRSL and post-IR IRSL signals originated from grains with ~12% K-content. All grains giving a measurable signal had K-content between 6 and 13%, therefore it is suggested that an internal K-content of 10 ± 2% can be assumed for routine single-grain dating of density-separated K-feldspars.  相似文献   

15.
The effects of prior infrared stimulation on the TL emission of three feldspar minerals (albite, sanidine and orthoclase) were studied. Different reductions in the TL signal were observed in the three samples: albite (Na-rich feldspar) was only partially affected by stimulation while there was an important decrease of TL signal in sanidine and orthoclase (K-rich and intermediate K–Na feldspars). A similar behaviour was also detected when the samples were illuminated at different temperatures. Moreover, when the IR stimulation was performed at temperatures below 100 °C, there was a charge transfer effect (PTTL) that progressively rose, moving from albite to sanidine to orthoclase. A dose recovery experiment was also performed, varying both preheat and measurement temperature. Our results are a further confirmation of the complexity and variability of the luminescence processes in feldspars. They also indicate that the luminescence characteristics of the albite we dealt with are particularly useful for dosimetric application.  相似文献   

16.
The alkali halide NaCl (Common salt) is an environmentally-abundant phosphor of considerable potential for retrospective dosimetry and radiological event analysis due to its high sensitivity to ionising radiation when analysed by Thermoluminescence (TL), Optically-stimulated luminescence (OSL) or Infrared-stimulated luminescence (IRSL). We report here aspects of luminescence from NaCl relevant to the development of valid protocols for measurement of recent ionising radiation exposure. The timescale of interest in this application is from days to decades, hence our emphasis is on detection and characterisation of TL emission in the 100–300 °C range, and of OSL and IRSL emissions measured following only low temperature preheating (160 °C). A collection of 19 salt samples was assembled, including samples of rock salt and domestic salt produced by evaporation from brine. Analysis of TL emission spectral changes, together with previously reported TL, OSL and IRSL sensitivity changes, confirmed activation of sensitivity change by exposure to temperatures exceeding 160 °C. Kinetic analysis using Chen's method found E = 0.943 eV and s = 5.1 × 1011 s?1 for the 100 °C TL peak, giving a lifetime at 20 °C consistent with previous calculations and in the range of 7–14 h.  相似文献   

17.
Equivalent dose determinations with IRSL and TL signals by the single disc regeneration method have been studied for a polymineral fine grain sample. The major problem is found to be the change in sensitivity for both signals; the sensitivity can either increase or decrease, depending on the dose and the heating profile applied. A method based on the IRSL signals to determine the range of equivalent dose with three sample discs was proposed.  相似文献   

18.
In luminescence measurements of potassium-feldspar (K-feldspar), both infrared (IR) and blue light (BL) can be used as stimulation sources. Component analysis suggests that the blue light stimulated luminescence (BLSL) measured at 60 °C from K-feldspar can be fitted using three components, namely fast, medium and slow. In order to explore the relationship between the origin of the infrared stimulated luminescence (IRSL) signal and the different components of the BLSL, five sets of experiments were conducted, namely post-IR BLSL (pIR-BLSL), post-BL IRSL (pBL-IRSL), pulse annealing tests, dose response and laboratory fading rate tests. It is observed that most of the IRSL signal can be bleached by BL, while the BLSL signal can only be partially bleached by the IR. The sources for IRSL are mainly associated with the fast and medium components of the BLSL signal.  相似文献   

19.
Several thermal treatments in the temperature range from 270 °C to 320 °C (each of 10 min) were tested as a final preparation procedure of LiF:Mg,Cu,Si to improve the protocol of TL readout with less residual signal for the LiF:Mg,Cu,Si TLD. This high sensitivity LiF:Mg,Cu,Si TLD exhibited thermal stability much better than that of the well known LiF:Mg,Cu,P. For LiF:Mg,Cu,Si, a readout temperature up to 300 °C did not affect the TL sensitivity and glow curve structure for 12 cycles of exposure and readout following an initial thermal treatment at 295 °C for 10 min. The residual TL signal also remained negligible.  相似文献   

20.
《Radiation measurements》2009,44(2):149-157
In this study, we applied optically stimulated luminescence (OSL) dating to two fine grain sediment samples collected at Jeongokri, Korea. A single aliquot regenerative dose (SAR) procedure was applied to both polymineral grains and to chemically isolated (H2SiF6) quartz grains of 4–11 μm diameter. For polymineral fine grains, the OSL IR depletion ratio and the equivalent dose (De) plateau test appear to be equally sensitive indicators of appropriate IR stimulation time for use in the ‘double SAR’ protocol. Additionally, the OSL IR depletion ratio test gives an indication of the relative mineral composition of the samples, hence providing an assessment of the likelihood of obtaining a quartz-dominated [post-IR] OSL signal. Use of higher preheat temperatures would assist in thermally eroding the non-quartz component of the [post-IR] OSL signal from polyminerals. For the quartz fine grains, data from both natural De determinations and laboratory dose recovery tests are required to identify the appropriate preheat temperatures for dating, due to problems of thermal transfer. This phenomenon is particularly exaggerated for these samples due to the large De values (≥350 Gy) and hence low slope of the dose–response curve. The double SAR method cannot be applied ubiquitously, even after careful and rigorous study of one sample from a section. Quartz OSL dating using a range of preheat temperatures is suggested to be the most suitable method for OSL dating of fine grain sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号