首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evolution of indirect exciton luminescence in AlAs/GaAs coupled quantum wells after excitation by pulsed laser radiation has been studied in strong magnetic fields (B⩽12 T) at low temperatures (T⩾1.3 K), both in the normal regime and under conditions of anomalously fast exciton transport, which is an indication of the onset of exciton superfluidity. The energy relaxation rate of indirect excitons measured in the range of relaxation times between several and several hundreds of nanoseconds is found to be controlled by the properties of the exciton transport, specifically, this parameter increases with the coefficient of excitonic diffusion. This behavior is qualitatively explained in terms of migration of excitons between local minima of the random potential in the plane of the quantum well. Zh. éksp. Teor. Fiz. 114, 1115–1120 (September 1998)  相似文献   

2.
The directional energy transport, i.e. exciton migration, in nanostar dendritic systems composed of two-state monomer units is studied using a quantum master equation approach. We examine the effects of the variation in the excitation energy of the monomer in the core region (core monomer) on the multistep exciton migration from the periphery to the core based on the relaxation factors among exciton states originating in weak exciton-phonon coupling. It turns out that when the core monomer possesses both an excitation energy slightly lower than that of the first generation and a partial exciton overlap with the first generation, more efficient and rapid exciton migration to the core is expected as compared with other core monomer cases with the energy level closer to or much lower than that of the first generation.  相似文献   

3.
The possibility of magnetic field control of the spectral and polarization characteristics of exciton recombination is examined in Cd(Mg, Mn) Te-based asymmetric double quantum wells. At low fields, the exciton transition in a semimagnetic well is higher in energy than that in a nonmagnetic well and the interwell exciton relaxation is fast. In contrast, when the energy order of the exciton transitions reverses at high fields, unexpectedly slow relaxation of σ polarized excitons from the nonmagnetic well to the σ+-polarized ground state in the semimagnetic well is observed. Strong dependence of the total circular polarization degree on the heavy-light hole splitting Δ hh-lh in the nonmagnetic well is found and attributed to the spin dependent interwell tunneling controlled by exciton spin relaxation. Such a slowing down of the relaxation allows separation of oppositely spin-polarized excitons in adjacent wells. The text was submitted by the authors in English.  相似文献   

4.
In this Letter we report on lateral diffusion measurements of excitons at low temperature in double quantum wells of various widths. The structure is designed so that excitons live up to 30 micros and diffuse up to 500 microm. Particular attention is given to establishing that the transport occurs by exciton motion. The deduced exciton diffusion coefficients have a very strong well width dependence, and obey the same power law as the diffusion coefficient for electrons.  相似文献   

5.
We predict an efficient electronic energy transfer from an excited semiconductor quantum well to optically active organic molecules of the nearby medium (substrate and/or overlayer). The energy transfer mechanism is of the F?rster type and, at semiconductor-organic distances of about 50 ?, can easily be as fast as 10-100 ps, which is about an order of magnitude shorter than the effective exciton lifetime in an isolated quantum well. In such conditions, the Wannier-Mott exciton luminescence is quenched and the organic luminescence is efficiently turned on. We consider both free as well as localized quantum well excitons discussing the dependence of the energy transfer rate on temperature and localization length. A similar mechanism for the non-radiative energy transfer to the organic overlayer molecules from unbound electron-hole pairs excited in the 2D continuum is shown to be much less competitive with respect to other relaxation channels inside the inorganic quantum well (in particular, 2D exciton formation). Received 20 July 1998  相似文献   

6.
Inspired by an experiment of indirect excitons photoluminescence (PL) in elevated quantum trap (High et al., 2009), we theoretically investigate the energy relaxation and nonlinear interactions of indirect excitons in coupled quantum wells. It is shown that, when increasing the laser power, the intensity reversion of two PL peaks is due to the phonon necklace effect. In addition, we use a nonlinear Schrödinger equation including attractive two-body, repulsive three-body interactions and the excitation power dependence of energy distribution to understand the exciton states. This model gives a natural account for the PL blue shift with the increase of the excitation power. This study thus provides an alternative way to understand the underlying physics of the exciton dynamics in coupled potential wells.  相似文献   

7.
Exciton states in Zn(Cd)Se/ZnMgSSe quantum wells with different diffusion spreading of interfaces are studied by optical spectroscopy methods. It is shown that the emission spectrum of quantum wells at low temperatures is determined by free excitons and bound excitons on neutral donors. The nonlinear dependence of the stationary photoluminescence intensity on the excitation power density and the biexponential luminescence decay are explained by the neutralization of charged defects upon photoexcitation of heterostructures. With the stationary illumination on, durable (about 40 min) reversible changes in the reflection coefficient near the exciton resonances of quantum wells are observed. It is shown that, along with the shift of exciton levels, the spreading of heteroboundaries leads to three effects: an increase in the excitonphonon interaction, an increase in the energy shift between the emission lines of free and bound excitons, and a decrease in the decay time of exciton luminescence in a broad temperature range. The main reasons for these effects are discussed.  相似文献   

8.
Hot exciton relaxation is observed in GaAs/Al x Ga1–x As multiple quantum wells. The photolumnescence excitation spectra of the localized exciton emission at low temperatures and excitation densities are composed of narrow equidistant peaks exactly separated by the GaAs LO-phonon energy (36 meV). The relaxation mechanism via LO-phonons is found to be important for localized excitons in multiple quantum wells with GaAs layer thicknesses of about 50 Å, where pronounced alloy fluctuations in the barriers provide a strong additional lateral potential which suppresses the dissociation of hot excitons.  相似文献   

9.
Binding energies of a charged exciton as a function of well width of a GaAs/GaAlAs corrugated quantum well are investigated. The calculations have been performed by the variational method based on a two parametric trial wave function within a single band effective mass approximation. We have also included the effect of nonparabolicity of the conduction band of GaAs. We study the spectral dependence of the charged exciton in a GaAs/GaAlAs corrugated quantum well as a function of well width. The photoionization cross section for the charged exciton placed at the center of the quantum well is computed as a function of normalized photon energy. The cross-section behavior as a function of incident energy is entirely different in the two cases of radiation being x-direction (along the growth direction) or z-direction. The interband emission energy as a function of well width is calculated and the dependence of the photoionization cross section on photon energy is carried out for the charged excitons. The resulting spectra are brought out for light polarized along and perpendicular to the growth direction. The results show that the charged exciton binding energy, interband emission energy and the photoionization cross section depend strongly on the well width. Our results are compared with the other existing literature available.  相似文献   

10.
Exciton-exciton annihilation on Cayley tree like dendrimer molecules are investigated via Monte Carlo simulations. Annihilation reaction of the type A+A→0 is considered to calculate the exciton density decay for multiexciton diffusion on dendrimers. Exciton density decays as a power law with a continuously varying exponent in a linear potential. For the case of realistic nonlinear potential of phenylacetylene dendrimers (Phys. Rev. Lett. 77 (1998) 4656) the excitons accumulate around the free energy minimum and annihilate each other quickly.  相似文献   

11.
We study exciton states in Zn(Cd)Se/ZnMgSSe quantum wells (QWs) with various degrees of diffusion blurring in the interfaces by the methods of optical spectroscopy. We show that at low temperatures the QW emission spectra are determined by free and neutral donor-bound excitons. Blurring of the heterointerfaces leads to the increase in the energy shift between the emission line maxima of free and bound excitons. We explain the nonlinear dependence of the steady-state photoluminescence intensity on the excitation-power density in terms of the neutralization of charged donors at the photoexcitation of heterostructures. We observed a complex long-time dynamics of the reflection coefficient, evoked by the charge-redistribution processes in the heterostructure, near the QW exciton resonances under the irradiation.  相似文献   

12.
在不同晶格温度和不同激发光强度下,测量了四元系GaInAsSb/GaAlAsSb单量子阱中自由激子的荧光光谱,导出了稳态光谱测量条件下自由激子荧光强度与激发光强度和晶格温度的一般性公式.计算结果表明,激子相对占有数引起的温度和密度效应会影响激子发光的强度关系.根据本文的简单模型,线性比例系数I/I0实际上综合地反映了量子阱中自由激子的荧光效率,而从激子荧光强度的Arrhenius图的最佳拟合中不仅可以得到激子的束缚能和激活能,而且还能估计出量子阱材料的本底浓度和散射时间常数. 关键词:  相似文献   

13.
肖景林 《发光学报》2003,24(1):28-32
采用线性组合算符和幺正变换方法,研究极性晶体中强耦合表面激子内部激发态的性质.计算了表面激子的激发态能量、激发能量和平均声子数.  相似文献   

14.
Effect of laser field intensity on exciton binding energies is investigated in a GaAs/ GaAlAs double quantum well system. Calculations have been carried out with the variational technique within the single band effective mass approximations using a two parametric trial wave function. The interband emission energy as a function of well width is calculated in the influence of laser field. The laser field induced photoionization cross-section for the exciton placed at the centre of the quantum well is computed as a function of normalized photon energy. The dependence of the photoionization cross-section on photon energy is carried out for the excitons. The resulting spectra are brought out for light polarized along and perpendicular to the growth direction. The intense laser field dependence of interband absorption coefficient is investigated. The results show that the exciton binding energy, interband emission energy, the photoionization cross-section and the interband absorption coefficient depend strongly on the well width and the laser field intensity. Our results are compared with the other existing literature available.  相似文献   

15.
A technique that makes it possible to investigate the mechanisms of phase relaxation of excitons in GaAs single quantum wells has been developed using resonant reflection spectroscopy. The dependence of the oscillator strength of the exciton transition on the quantum well thickness has been measured in the thickness range 9.1–30.0 nm. It has been demonstrated that the oscillator strength with a high accuracy does not depend on the temperature in the range 8–90 K. The temperature dependence of the homogeneous broadening has been measured, and the inhomogeneous broadening of the resonance exciton line has been determined. A nonmonotonic dependence of the spectral broadening of the exciton line on the intensity of the resonant excitation at a temperature of 8 K has been revealed for the sample with a high-quality quantum well. It has been established that an increase in the excitation level by five orders of magnitude above the linear limit leads to an insignificant change in the oscillator strength of the exciton transition and to a multiple broadening of the spectral line profile.  相似文献   

16.
The Bose condensation of two-dimensional dipolar excitons in quantum wells is numerically studied by the diffusion Monte Carlo simulation method. The correlation, microscopic, thermodynamic, and spectral characteristics are calculated. It is shown that, in structures of coupled quantum wells, in which low-temperature features of exciton luminescence have presently been observed, dipolar excitons form a strongly correlated system.  相似文献   

17.
18.
19.
Li Wang  Qinglu Wang 《Physics letters. A》2009,373(25):2193-2196
The nonlinear diffusion of the spatially indirect excitons in an ideal bilayer with an in-plane harmonic trap is investigated based on the theories developed by Ivanov [A.L. Ivanov, Europhys. Lett. 59 (2002) 586; A.L. Ivanov, J. Phys.: Condens. Matter 16 (2004) S3629] and Rapaport et al. [R. Rapaport, G. Chen, S. Simon, O. Mitrofanov, L. Pfeiffer, P.M. Platzman, Phys. Rev. B 72 (2005) 075428]. A nonlinear equation for the diffusion of the indirect excitons in this structure is established. The two-dimensional density of the indirect excitons in this structure is calculated. The calculations show that the density adjacent to the trap center for different exciton temperatures can remain very high even long after the photo-excitation because of the confinement of the in-plane harmonic trap, and that the indirect excitons gather several tens of μm away from the trap center. The calculations are in good agreement qualitatively with the experimental results of Voros et al. [Z. Voros, D.W. Snoke, L. Pfeiffer, K. West, Phys. Rev. Lett. 97 (2006) 016803] and prove that an in-plane harmonic trap can indeed keep an exciton gas dense near its center.  相似文献   

20.
The exciton states in individual quantum dots prepared by the selective interdiffusion method in CdTe/CdMgTe quantum wells are studied by the methods of steady-state optical spectroscopy. The annealing-induced diffusion of Mg atoms inward to the bulk of the quantum well, which is significantly enhanced under the SiO2 mask, leads to a modulation of the bandgap width in the plane of the well, with the minima of the potential being located in the mask aperture areas. A lateral potential that arises, whose height is in the range 30–270 meV and characteristic scale is about 100 nm, efficiently localizes carriers, which form quasi-zero-dimensional excitons in the weak spatial confinement regime. Detailed magnetooptical studies show that Coulomb correlations play a significant role in the formation of exciton states under such a regime, which, in particular, manifests itself in the localization of the wavefunction of carriers on scales that are considerably smaller than the scale of the lateral potential. The particular features of the interlevel splitting, of the biexciton binding energy, and of the diamagnetic shift are discussed. A strong dependence of the interlevel relaxation on the interlevel splitting (the phonon neck) indicates that alternative relaxation mechanisms in the quantum dots studied are weak. The excited states are populated according to the Pauli principle, which indicates that it is possible to apply the shell model of many-exciton states to quantum dots under the weak spatial confinement conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号