首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 241 毫秒
1.
肖贤波  李小毛  陈宇光 《中国物理 B》2009,18(12):5462-5467
We investigate theoretically the spin-dependent electron transport in a straight waveguide with Rashba spin--orbit coupling (SOC) under the irradiation of a transversely polarized electromagnetic (EM) field. Spin-dependent electron conductance and spin polarization are calculated as functions of the emitting energy of electrons or the strength of the EM field by adopting the mode matching approach. It is shown that the spin polarization can be manipulated by external parameters when the strength of Rashba SOC is strong. Furthermore, a sharp step structure is found to exist in the total electron conductance. These results can be understood by the nontrivial Rashba subbands intermixing and the electron intersubband transition when a finite-range transversely polarized EM field irradiates a straight waveguide.  相似文献   

2.
赵华  廖文虎  周光辉 《中国物理》2007,16(6):1748-1752
We investigate theoretically the electron transport for a two-level quantum channel (wire) with Rashba spin--orbit coupling under the irradiation of a longitudinally-polarized external laser field at low temperatures. Using the method of equation of motion for Keldysh nonequilibrium Green function, we examine the time-averaged spin polarized conductance for the system with photon polarization parallel to the wire direction. By analytical analysis and a few numerical examples, the interplay effects of the external laser field and the Rashba spin--orbit coupling on the spin-polarized conductance for the system are demonstrated and discussed. It is found that the longitudinally-polarized laser field can adjust the spin polarization rate and produce some photon sideband resonances of the conductance for the system.  相似文献   

3.
We study theoretically the electronic and transport property for an armchair-edge graphene nanoribbon (GNR.) with 12 and 11 transversal atomic lines, respectively. The ONR. is irradiated under an external longitudinal polarized high-frequency electromagnetic field at low temperatures. Within the framework of linear response theory in the perturbative regime, we examine the joint density of states and the real conductance of the system. It is demonstrated that, by numerical examples, some new photon-assisted intersubband transitions over a certain range of field frequency exist with different selection rules from those of both zigzag-edge GNR. and single-walled carbon nanotube. This opto-electron property dependence of armchair-edge GNR. on field frequency may be used to detect the high-frequency electromagnetic irradiation.  相似文献   

4.
孙科伟  熊诗杰 《中国物理》2006,15(4):828-832
We have calculated the transport properties of electron through an artificial quantum dot by using the numerical renormalization group technique in this paper. We obtain the conductance for the system of a quantum dot which is embedded in a one-dimensional chain in zero and finite temperature cases. The external magnetic field gives rise to a negative magnetoconductance in the zero temperature case. It increases as the external magnetic field increases. We obtain the relation between the coupling coefficient and conductance. If the interaction is big enough to prevent conduction electrons from tunnelling through the dot, the dispersion effect is dominant in this case. In the Kondo temperature regime, we obtain the conductivity of a quantum dot system with Kondo correlation.  相似文献   

5.
赵小松  吕建钦 《中国物理 C》2009,33(Z2):125-127
Both the PIC (Particle-In-Cell) model and the Lie algebraic method can be used to simulate the transport of intense continuous beams. The PIC model is to calculate the space charge field, which is blended into the external field, and then simulate the trajectories of particles in the total field; the Lie algebraic method is to simulate the intense continuous beam transport with transport matrixes. Two simulation codes based on the two methods are developed respectively, and the simulated results of transport in a set of electrostatic lenses are compared. It is found that the results from the two codes are in agreement with each other, and both approaches have their own merits.  相似文献   

6.
陈竞哲  张进  韩汝珊 《中国物理 B》2008,17(6):2208-2215
The mesoscopic quantum interference phenomenon (QIP) can be observed and behaves as the oscillation of conductance in nano-devices when the external magnetic field changes. Excluding the factor of impurities or defects, specific QIP is determined by the sample geometry. We have improved a first-principles method based on the matrix Green's function and the density functional theory to simulate the transport behaviour of such systems under a magnetic field. We have studied two kinds of QIP: universal conductance fluctuation (UCF) and Aharonov Bohm effect (A-B effect). We find that the amplitude of UCF is much smaller than the previous theoretical prediction. We have discussed the origin of difference and concluded that due to the failure of ergodic hypothesis, the ensemble statistics is not applicable, and the conductance fluctuation is determined by the flux-dependent density of states (DOSs). We have also studied the relation between the UCF and the structure of sample. For a specific structure, an atomic circle, the A-B effect is observed and the origin of the oscillation is also discussed.  相似文献   

7.
储开龙  王孜博  周娇娇  江华 《中国物理 B》2017,26(6):67202-067202
The transport study of graphene based junctions has become one of the focuses in graphene research. There are two stacking configurations for monolayer–bilayer–monolayer graphene planar junctions. One is the two monolayer graphene contacting the same side of the bilayer graphene, and the other is the two-monolayer graphene contacting the different layers of the bilayer graphene. In this paper, according to the Landauer–Büttiker formula, we study the transport properties of these two configurations. The influences of the local gate potential in each part, the bias potential in bilayer graphene,the disorder and external magnetic field on conductance are obtained. We find the conductances of the two configurations can be manipulated by all of these effects. Especially, one can distinguish the two stacking configurations by introducing the bias potential into the bilayer graphene. The strong disorder and the external magnetic field will make the two stacking configurations indistinguishable in the transport experiment.  相似文献   

8.
Using the density functional B3P86/cc-PV5Z method, the geometric structure of BH molecule under different external electric fields is optimized, and the bond lengths, dipole moments, vibration frequencies, and other physical properties parameters are obtained. On the basis of setting appropriate parameters, scanning single point energies are obtained by the same method and the potential energy curves under different external fields are also obtained. These results show that the physical property parameters and potential energy curves may change with external electric field, especially in the case of reverse direction electric field. The potential energy function without external electric field is fitted by Morse potential, and the fitting parameters are obtained which are in good agreement with experimental values. In order to obtain the critical dissociation electric parameter, the dipole approximation is adopted to construct a potential model fitting the corresponding potential energy curve of the external electric field. It is found that the fitted critical dissociation electric parameter is consistent with numerical calculation, so that the constructed model is reliable and accurate. These results will provide important theoretical and experimental reference for further studying the molecular spectrum, dynamics, and molecular cooling with Stark effect.  相似文献   

9.
林建忠  张凯  李惠君 《中国物理》2006,15(11):2688-2696
In this paper the mixing of a sample in the curved microchannel with heterogeneous surface potentials is analysed numerically by using the control-volume-based finite difference method. The rigorous models for describing the wall potential and external potential are solved to get the distribution of wall potential and external potential, then momentum equation is solved to get the fully developed flow field. Finally the mass transport equation is solved to get the concentration field. The results show that the curved microchannel has an optimized capability of sample mixing and transport when the heterogeneous surface is located at the left conjunction between the curved part and straight part. The variation of heterogeneous surface potential $\psi_{\rm n}$has more influence on the capability of sample mixing than on that of sample transport. The ratio of the curved microchannel's radius to width has a comparable effect on the capability of sample mixing and transport. The conclusions above are helpful to the optimization of the design of microfluidic devices for the improvement of the efficiency of sample mixing.  相似文献   

10.
肖贤波  周光辉  杨谋  李源  徐志峰 《中国物理》2004,13(9):1531-1536
We study theoretically the low-temperature electronic transport property of a straight quantum wire under the irradiation of a finite-range transversely polarized external terahertz (THz) electromagnetic (EM) field. Using the freeelectron model and the scattering matrix approach, we show an unusual behaviour of the electronic transmission of this system. A sharp step-structure appears in the electronic transmission probability as the EM field strength increases to a threshold value when a coherent EM field is applied. We demonstrate that this effect physically comes from the inelastic scattering of electrons with lateral photons through intersubband transitions.  相似文献   

11.
The transport properties of finite length double-walled carbon nanotubes subject to the influences of a transverse electric field and a magnetic field with varying polar angles are investigated theoretically. The electrical conductance, thermal conductance and Peltier coefficient dependences on the external fields and symmetric configuration are studied in linear response regime. Prominent peak structures of the electrical conductance are predicted when varying the electric field strength. The features of the conductance peaks are found to be strongly dependent on the external fields and the intertube interactions. The heights of the electrical and thermal conductance peaks display the quantized behavior, while those of the Peltier coefficient do not. The conductance peaks are found to be broadened by the finite temperature.  相似文献   

12.
Spin and charge transport through a quantum dot coupled to external nonmagnetic leads is analyzed theoretically in terms of the non-equilibrium Green function formalism based on the equation of motion method. The dot is assumed to be subject to spin and charge bias, and the considerations are focused on the Kondo effect in spin and charge transport. It is shown that the differential spin conductance as a function of spin bias reveals a typical zero-bias Kondo anomaly which becomes split when either magnetic field or charge bias are applied. Significantly different behavior is found for mixed charge/spin conductance. The influence of electron-phonon coupling in the dot on tunneling current as well as on both spin and charge conductance is also analyzed.  相似文献   

13.
Spin-dependent Floquet scattering theory is developed to investigate the photon-assisted spin-polarized electron transport through a semiconductor heterostructure in the presence of an external electric field. Spin-dependent Fano resonances and spin-polarized electron transport through a laser irradiated time-periodic non-magnetic heterostructure in the presence of Dresselhaus spin-orbit interaction and a gate-controlled Rashba spin-orbit interaction are investigated. The electric field due to laser along with the spin-orbit interactions help to get spin-dependent Fano resonances in the conductance, whereas the external bias can be appropriately adjusted to get a near 80% spin-polarized electron transmission through heterostructures. The resultant nature of the Floquet scattering depends on the relative strength of these two electric fields.  相似文献   

14.
We report a theoretical analysis of electron transport through a quantum dot with an embedded biaxial single-molecule magnet, which is coupled to ferromagnetic electrodes of parallel and antiparallel magnet-configurations. For the antiparallel configuration of complete polarization it is shown that the originally prohibited electron transport can be opened up by the macroscopic quantum coherence of the molecular magnet, which provides a spin-flipping mechanism. The charge-current and differential conductance are controllable by variation of the magnitude and orientation of an external magnetic field, which in turn manipulates the macroscopic quantum coherence of the molecular magnet. Moreover, the transport can be switched off at particular values of the magnetic field, where the tunnel splitting is quenched by the quantum phase interference of tunnel paths.The transport current and differential conductance as functions of the electrode-polarization and magnetic field are extensively studied, which may be useful in practical applications. A new transport channel is found in the completely polarized parallel-configuration induced by the tunnel splitting of molecular magnet and resonance-peak splits of the conductance are observed in non-completely polarized configurations. 75.50.Xx Molecular magnets  相似文献   

15.
The electron transport through a carbon nanotube (CNT) double barrier junction exposed to an external electromagnetic field is studied. The electron spectrum in the quantum well (QW) formed by the junction bears relativistic features. We examine how the ac field affects the level quantization versus the ac field parameters and chirality. We find that the transport through the junction changes dramatically versus the ac field frequency and amplitude. These changes are pronounced in the junction's differential conductance, which allows judgment about the role of relativistic effects in the CNT QW structures.  相似文献   

16.
In linear response, the electric conductance of mesoscopic, two-terminal devices is symmetric with respect to the direction of an external magnetic field. The conductance symmetry, in general, breaks down in the non-linear regime of transport. Here we consider semiconductor quantum dots and show certain symmetries survive in the non-linear conductance with respect to the bias voltage and magnetic field that can be measured.  相似文献   

17.
We report the observation of the resonant transport in multiwall carbon nanotubes in a crossed geometry. The resonant transport is manifested by an asymmetric peak in the differential conductance curve. The observed asymmetric conductance peak is well explained by the Fano resonance originating from the scattering at the contact region of the two nanotubes. The conductance peak depends sensitively on the external magnetic field and exhibits Aharonov-Bohm-type oscillation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号