首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The next‐to‐next‐to‐leading order post‐Newtonian spin‐orbit and spin(1)‐spin(2) Hamiltonians for binary compact objects in general relativity are derived. The Arnowitt‐Deser‐Misner canonical formalism and its generalization to spinning compact objects in general relativity are presented and a fully reduced matter‐only Hamiltonian is obtained. Several simplifications using integrations by parts are discussed. Approximate solutions to the constraints and evolution equations of motion are provided. Technical details of the integration procedures are given including an analysis of the short‐range behavior of the integrands around the sources. The Hamiltonian of a test‐spin moving in a stationary Kerr spacetime is obtained by rather simple approach and used to check parts of the mentioned results. Kinematical consistency checks by using the global (post‐Newtonian approximate) Poincaré algebra are applied. Along the way a self‐contained overview for the computation of the 3PN ADM point‐mass Hamiltonian is provided, too.  相似文献   

2.
We present the next‐to‐next‐to‐leading order post‐Newtonian (PN) spin‐orbit Hamiltonian for two self‐gravitating spinning compact objects. If at least one of the objects is rapidly rotating, then the corresponding interaction is comparable in strength to a 3.5PN effect. The result in the present paper in fact completes the knowledge of the post‐Newtonian Hamiltonian for binary spinning black holes up to and including 3.5PN. The Hamiltonian is checked via known results for the test‐spin case and via the global Poincaré algebra with the center‐of‐mass vector uniquely determined by an ansatz.  相似文献   

3.
N‐Substituted 4,4‐dimethyl‐4‐silathiane 1‐sulfimides [R = Ph ( 1 ), CF3 ( 2 )] were studied experimentally by variable temperature dynamic NMR spectroscopy. Low temperature 13C NMR spectra of the two compounds revealed the frozen ring inversion process and approximately equal content of the axial and equatorial conformers. Calculations of the 4‐silathiane derivatives 1 , 2 and the model compound [R = Me ( 3 )] as well as their carbon analogs, the similarly N‐substituted thiane 1‐sulfimides [R = Ph ( 4 ), CF3 ( 5 ), Me ( 6 )] at the DFT/B3LYP/6–311G(d,p) level in the gas phase and in chloroform solution using the PCM model at the same level of theory showed a strong dependence of the relative stability of the conformer on the solvent. The electronegative trifluoromethyl group increases the relative stability of the axial conformer. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Second‐order rate constants (k2) were determined for the addition of ten nitrogenous organic compounds (benzylamine, 2,2,2‐trifluoethylamine chlorhidrate, methylamine chlorhidrate, glycine ethyl ester chlorhidrate, glycine, glycylglycine chlorhidrate, morpholine, pyperidine, pyperazine and dimethylamine) to the N‐chloro‐N‐methyl‐p‐toluenesulfonamide (NCNMPT) in the formation reaction of N‐chloramines in aqueous solution at 25 °C and ionic strength 0.5 M. The series of nucleophiles considered is structurally very varied and covers five pKa units. The kinetic behaviour is similar for all compounds, being the elementary step the transfer of chlorine from the NCNMPT molecule to the nitrogen of the free amino group. These reactions were found first order in both reagents. The values of the rate constants indicate that the more basic amines produce N‐chloramines more readily. Rate constants for the nucleophilic attack are shown to correlate with literature data for some of these nitrogenous organic compounds in their reaction with N‐methyl‐N‐nitroso‐p‐toluenesulfonamide. Both reactions involve that the rate determining step is the attack of nitrogenous compounds upon electrophilic centre (Cl or else NO group). NCNMPT is a particularly interesting substrate, for which has not hitherto been published kinetic information, that allows us to assess the efficiency and the competitiveness of this reaction and compare it with other agents with a Cl+ atom. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Reaction of 3‐methyl‐2(1H)‐quinoxalinone ( 4) and 2(1H)‐quinoxalinone ( 5) with 5,6‐anhydro‐1,2‐O‐isopropylidene‐ α‐D ‐glucofuranose 6 gives the unexpected O‐glucoquinoxalines derivatives by the intermediary novel intramolecular rearrangement of 5,6‐anhydro‐1,2‐O‐isopropylidene‐α‐D ‐glucofuranose to the corresponding 3,6‐anhydro form. The obtained O‐glucoquinoxalines 7,8 were identified by NMR spectroscopy. The X‐ray crystal structures have been determined at room temperature. Moreover, a solid–solid phase transition has been detected at 198.9 K for O‐glucoquinoxalines 7 and the structure of the low‐temperature phase has been solved at 188 K. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
The conformational equilibria of 3‐methyl‐3‐silathiane 5 , 3‐fluoro‐3‐methyl‐3‐silathiane 6 and 1‐fluoro‐1‐methyl‐1‐silacyclohexane 7 have been studied using low temperature 13C NMR spectroscopy and theoretical calculations. The conformer ratio at 103 K was measured to be about 5 ax: 5 eq = 15:85, 6 ax: 6 eq = 50:50 and 7 ax: 7 eq = 25:75. The equatorial preference of the methyl group in 5 (0.35 kcal mol?1) is much less than in 3‐methylthiane 9 (1.40 kcal mol?1) but somewhat greater than in 1‐methyl‐1‐silacyclohexane 1 (0.23 kcal mol?1). Compounds 5–7 have low barriers to ring inversion: 5.65 (ax → eq) and 6.0 (eq → ax) kcal mol?1 ( 5 ), 4.6 ( 6 ), 5.1 (Meax → Meeq) and 5.4 (Meeq → Meax) kcal mol?1 ( 7 ). Steric effects cannot explain the observed conformational preferences, like equal population of the two conformers of 6 , or different conformer ratio for 5 and 7 . Actually, by employing the NBO analysis, in particular, considering the second order perturbation energies, vicinal stereoelectronic interactions between the Si–X and adjacent C–H, C–S, and C–C bonds proved responsible. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Monomers of 5‐mercapto‐1,3,4‐thiadiazole‐2‐thione (bismuthiol) were studied using an experimental matrix‐isolation technique as well as by carrying out theoretical quantum chemical calculations. The calculations, performed using the quadratic configuration interaction method with single and double excitations (QCISD)/6‐31++G(d,p)//DFT(B3LYP)/6‐311++G(2d,p), predict that the thione–thiol tautomer of bismuthiol should be significantly (by more than 19 kJ mol?1) more stable than other tautomeric forms. Accordingly, only the signatures of the thione–thiol tautomer were observed in the FT‐IR spectrum of bismuthiol, recorded directly after deposition of an Ar matrix. UV (λ > 320 nm) irradiation induced the conversion of the thione–thiol tautomer into the dithiol form. Analogous investigations were carried out for two related compounds: 5‐methyl‐1,3,4‐thiadiazole‐2‐thione and 5‐methylthio‐1,3,4‐thiadiazole‐2‐thione. For these two species, only the thione tautomeric forms were observed after deposition of Ar matrices. These tautomers were predicted (by QCISD calculations) to be more stable (by at least 19 kJ mol?1) than other tautomeric forms. Upon UV irradiation, the most stable thione forms of these compounds were transformed into the corresponding thiol tautomers. Direct observation of the thione → thiol phototautomeric processes provides a clear proof that intramolecular proton transfer reaction can occur in molecules, such as bismuthiol, in spite of the increased NH···S distance, in comparison to other phototautomerizing species studied so far. All the isomers of the studied compounds (substrates and products of the photoreactions) were identified by comparison of their IR spectra with the spectra calculated at the DFT(B3LYP)/6‐311++G(2d,p) level of theory for possible isomeric structures. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
AlGaN/GaN hetero‐field‐effect‐transistor‐type (HFET‐type) photosensors are fabricated with a p‐GaInN optical gate for the detection of visible light. These photosensors employ a two‐dimensional electron gas at the heterointerface between AlGaN and GaN as a highly conductive channel with a high electron mobility. By changing the InN molar fraction in the p‐GaInN optical gate, the wavelength range of the photosensitivity of the HFET‐type photosensors can be controlled. The photosensitivity of the AlGaN/GaN HFET‐type photosensors with a p‐GaInN optical gate greatly surpassed those of commercially available Si pin and Si avalanche photodiodes, and was comparable to those of photomultiplier tubes. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
A focusing system based on a polycapillary half‐lens optic has been successfully tested for transmission and fluorescence µ‐X‐ray absorption spectroscopy at a third‐generation bending‐magnet beamline equipped with a non‐fixed‐exit Si(111) monochromator. The vertical positional variations of the X‐ray beam owing to the use of a non‐fixed‐exit monochromator were shown to pose only a limited problem by using the polycapillary optic. The expected height variation for an EXAFS scan around the Fe K‐edge is approximately 200 µm on the lens input side and this was reduced to ~1 µm for the focused beam. Beam sizes (FWHM) of 12–16 µm, transmission efficiencies of 25–45% and intensity gain factors, compared with the non‐focused beam, of about 2000 were obtained in the 7–14 keV energy range for an incoming beam of 0.5 × 2 mm (vertical × horizontal). As a practical application, an As K‐edge µ‐XANES study of cucumber root and hypocotyl was performed to determine the As oxidation state in the different plant parts and to identify a possible metabolic conversion by the plant.  相似文献   

10.
A homogeneous, molecular, gas‐phase elimination kinetics of 2‐phenyl‐2‐propanol and 3‐methyl‐1‐ buten‐3‐ol catalyzed by hydrogen chloride in the temperature range 325–386 °C and pressure range 34–149 torr are described. The rate coefficients are given by the following Arrhenius equations: for 2‐phenyl‐2‐propanol log k1 (s?1) = (11.01 ± 0.31) ? (109.5 ± 2.8) kJ mol?1 (2.303 RT)?1 and for 3‐methyl‐1‐buten‐3‐ol log k1 (s?1) = (11.50 ± 0.18) ? (116.5 ± 1.4) kJ mol?1 (2.303 RT)?1. Electron delocalization of the CH2?CH and C6H5 appears to be an important effect in the rate enhancement of acid catalyzed tertiary alcohols in the gas phase. A concerted six‐member cyclic transition state type of mechanism appears to be, as described before, a rational interpretation for the dehydration process of these substrates. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
The Fourier transform infrared (4000–400 cm−1) and Fourier transform Raman (3500–500 cm−1) spectra of 4‐hydroxy‐3‐(3‐oxo‐1‐phenylbutyl)‐2H‐1‐benzopyran‐2‐one (Warfarin) have been measured and calculated. The structure optimization has been made using density functional theory (DFT) calculations. Complete vibrational assignments of the observed spectra have been compared with theoretical wavenumbers. The wavenumber increasing in the methyl group shows the electronic hyperconjugation effect. The natural bond orbital (NBO) analysis reveals the hyperconjugation interaction and the intramolecular hydrogen bonding. The first‐order hyperpolarizability has been calculated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
X‐ray beam‐position stability is indispensable in cutting‐edge experiments using synchrotron radiation. Here, for the first time, a beam‐position feedback system is presented that utilizes an easy‐to‐use X‐ray beam‐position monitor incorporating a diamond‐fluorescence screen. The acceptable range of the monitor is above 500 µm and the feedback system maintains the beam position within 3 µm. In addition to being inexpensive, the system has two key advantages: it works without a scale factor for position calibration, and it has no dependence on X‐ray energy, X‐ray intensity, beam size or beam shape.  相似文献   

13.
Electrochemical reduction of 2,4‐dimethyl(diethyl)‐9‐oxo‐10‐(4‐heptoxyphenyl)‐9H‐thioxanthenium hexafluorophosphates in acetonitrile (MeCN) and N,N‐dimethylformamide is an irreversible 1‐electron process accompanied by the cleavage of the C(Ph)‐S bond in thioxanthenium cations with the formation of the corresponding 2,4‐dimethyl(diethyl)‐9H‐thioxanthene‐9‐ones. One‐electron reversible electrochemical reduction of the latter compounds occurs at more negative potentials and yields the corresponding radical anions, which have been characterized by electron paramagnetic resonance spectroscopy and density functional theory calculations at the (U)B3LYP/6‐31+G*/polarizable continuum model level of theory.  相似文献   

14.
15.
16.
1,1,1‐Trichloro‐3‐(1‐phenethylamino‐ethylidene)‐pentane‐2,4‐dione is spectroscopically and structurally elucidated by means of linear‐polarized IR spectroscopy (IR‐LD) of oriented solids as a colloidal suspension in nematic liquid crystal. Structural information and IR‐spectroscopic assignment are supported by quantum chemical calculations at MP2 and B3LYP level of theory and 6‐311++G** basis set. The geometry is characterized with an inramolecular hydrogen bond of NHO?C with length of 2.526 Å and a NHO angle of 140.5(1)°. The NH? C(CH3)C?C? C?O(CH3) fragment is nearly flat with a maximal deviation of total planarity of 10.4°. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
4,4‐Dimethyl‐1‐(trifluoromethylsulfonyl)‐1,4‐azasilinane 1 and 2,2,6,6‐tetramethyl‐4‐(trifluoromethylsulfonyl)‐1,4,2,6‐oxazadisilinane 2 were studied by variable temperature dynamic 1H, 13C, 19F NMR spectroscopy and theoretical calculations at the DFT (density functional theory) and MP2 (Møller‐Plesset 2) levels of theory. Both kinetic (barriers to ring inversion) and thermodynamic data (frozen conformational equilibria) could be obtained for the two compounds. The computations revealed two minima on the potential energy surface for molecules 1 and 2 corresponding to the rotamers with the CF3SO2 group directed ‘inward’ and ‘outward’ the ring, the latter being 0.2–0.4 kcal/mol (for 1 ) and 1.1 kcal/mol (for 2 ) more stable than the former. The vibrational calculations at the DFT and MP2 levels of theory give the values of the free energy difference ΔGo for the ‘inward’ ‘outward’ equilibrium consistent with those determined from the experimentally measured ratio of the rotamers. The structure of crystalline compound 2 was ascertained by X‐ray diffraction analysis. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
We report a high‐repetition‐rate picosecond fiber‐based source at 2.1 µm offering exceptional performance capabilities over existing lasers near this wavelength, providing high average power and efficiency together with excellent spectral, power and beam pointing stability, in high spatial beam quality. This new source is based on a near‐degenerate MgO:PPLN optical parametric oscillator (OPO) pumped by an Yb‐fiber laser at 1064 nm, and incorporating a diffraction grating for spectral control. The device provides as much as 7.1 W of average power at 2.1 µm for a pump power of 18 W at an extraction efficiency of 39.4% in pulses of 20 ps at 79.3 MHz. The output exhibits passive power stability better than 1% rms over 15 hours, and a beam pointing stability ∼40 µrad over 1 hour, in high spatial quality with M2 ∼ 3.5. The output beam is linearly polarized and the pulse train has an amplitude stability better than 3.4% rms over 2 µsec. Radio‐frequency measurements of the output pulse train also confirm high temporal stability and low timing jitter, indicating that the source is ideal for variety of applications including pumping long‐wavelength mid‐infrared OPOs. Photograph shows the temperature‐controlled, 50‐mm‐long MgO:PPLN crystal inside the cavity, used as nonlinear gain medium in the picosecond source operating at 2.1 µm. The visible light is the result of non‐phase‐matched second harmonic generation of the pump beam in the MgO:PPLN crystal.

  相似文献   


19.
20.
With the modern development of infrared laser sources such as broadly tunable quantum cascade lasers and frequency combs, applications of infrared laser spectroscopy are expected to become widespread. Consequently, convenient infrared detectors are needed, having properties such as fast response, high efficiency, and room‐temperature operation. This work investigated conditions to achieve near‐room‐temperature photon‐noise‐limited performance of quantum well infrared photodetectors (QWIPs), in particular the laser power requirement. Both model simulation and experimental verification were carried out. At 300 K, it is shown that the ideal performance can be reached for typical QWIP designs up to a detection wavelength of 10 µm. At 250 K, which is easily reachable with a thermoelectric Peltier cooler, the ideal performance can be reached up to 12 µm. QWIPs are therefore suitable for detection and sensing applications with devices operating up to or near room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号