首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
王睿星  王喆  马特  崔悦  袁武  宋宏伟 《强激光与粒子束》2023,35(5):051002-1-051002-9
为了明确高速气流对C/SiC复合材料激光烧蚀行为的影响机制,开展了不同环境下强激光对C/SiC复合材料的烧蚀对比实验研究。利用激光器与高速风洞联合实验平台,完成了静态以及Ma 1.8,Ma 3.0,Ma 6.0气流环境下2D与3DN C/SiC复合材料激光烧蚀实验。结果表明,与静态环境相比,高速气流对C/SiC复合材料的激光烧蚀行为产生了显著的影响,气流的冲刷使得烧蚀坑呈现出更宽、更深、更光滑的变化趋势。随着气流速度的增长,线烧蚀速率与质量烧蚀速率逐渐增大,主要原因为当地静压降低引起的升华速率增大,以及动压增大引起的剥蚀速率增大。此外,通过实验对比了不同构型对C/SiC激光烧蚀行为的影响。结果表明:2D C/SiC复合材料由于厚度方向更低的导热能力、更低的孔隙率等原因,其在不同环境条件下抗烧蚀能力均强于3DN C/SiC复合材料。  相似文献   

2.
A novel ZrC-SiC coating was prepared on carbon/carbon (C/C) composites surface by solid phase infiltration and the ablation properties of the ZrC-SiC coated C/C composites under oxyacetylene flame were studied. The results show that the coating prepared on the condition of optimum process parameters exhibits dense surface and outstanding anti-ablation ability. After ablation for 20 s, the mass ablation rates of the coated C/C composites can be lowered to 2.36 × 10−3 g/s, 37.1% reduction compared with uncoated C/C composites. The oxide layer composed of ZrO2 and SiO2 acts as oxygen diffusion barrier and the evaporation of ZrO2 and SiO2 absorbs a great amount of heat from the flame and reduces the erosive attack on the coating.  相似文献   

3.
Preparation conditions of single-phase SiC nanotubes and C-SiC coaxial nanotubes were investigated. The characterization of single-phase SiC nanotubes and C-SiC coaxial nanotubes were carried out. The SiC nanowires, which were made of the catenated SiC grains of 50–200 nm in diameter, were obtained in carbon nanotubes reacted at 1450 °C. The only C-SiC coaxial nanotubes were formed at 1300 °C. A few single-phase SiC nantoubes were synthesized at 1200 °C for 100 h. More than half number of nanotubes reacted at 1200 °C for 100 h were altered to single-phase SiC nantoubes by heat treatment of 600 °C for 1 h in air since the remained carbon was removed. The energy dispersive X-ray spectroscopy analysis revealed that the atomic ratio of Si to C in single-phase SiC nanotubes was almost 1; these single-phase SiC nanotubes consisted of near-stoichiometric SiC grains.  相似文献   

4.
To improve ablation resistance of C/C composites, HfC-based coating and SiC coating were prepared on the surface of C/C composites by chemical vapor deposition. The coating exhibits dense surface and outstanding anti-ablation ability. Compared with uncoated C/C, the linear and mass ablation rates of the coated C/C decreased by 33.3% and 66.7%, respectively, after ablation for 20 s. The residual oxides can prevent oxygen from diffusing inwardly; large amounts of heat can be taken away by the gas generated during ablation, which is also helpful for protection.  相似文献   

5.
Needle-shaped 3C-SiC nanowires were grown from commercially available SiC powders in a thermal evaporation process with iron as catalyst. A strong broad photoluminescence peak located around 450 nm was observed at room temperature, which may be ascribed to quantum size effects of nanomaterials. Needle-shaped 3C-SiC nanowires may have great potential applications such as blue-green light-emitting diodes and display devices.  相似文献   

6.
When heated by high-energy electron beam (EB), SiC can decompose into C and Si vapor. Subsequently, Si vapor reacts with metal oxide thin film on substrate surface and formats dense SiO2 thin film at high substrate temperature. By means of the two reactions, SiC/SiO2 composite thin film was prepared on the pre-oxidized 316 stainless steel (SS) substrate by electron beam-physical vapor deposition (EB-PVD) only using β-SiC target at 1000 °C. The thin film was examined by energy dispersive spectroscopy (EDS), grazing incidence X-ray asymmetry diffraction (GIAXD), scanning electron microscopy (SEM), atomic force microscopy (AFM), backscattered electron image (BSE), electron probe microanalysis (EPMA), X-ray photoelectron spectroscopy (XPS) and Fourier transformed infra-red (FT-IR) spectroscopy. The analysis results show that the thin film is mainly composed of imperfect nano-crystalline phases of 3C-SiC and SiO2, especially, SiO2 phase is nearly amorphous. Moreover, the smooth and dense thin film surface consists of nano-sized particles, and the interface between SiC/SiO2 composite thin film and SS substrate is perfect. At last, the emissivity of SS substrate is improved by the SiC/SiO2 composite thin film.  相似文献   

7.
纳米C和SiC掺杂对MgB2带材超导性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
采用X射线衍射仪,扫描电镜,超导量子干涉仪等仪器对纳米C和SiC掺杂的MgB2带材进行了表征,并采用标准四引线法对样品的临界电流进行了测试. 实验表明,C和SiC掺杂在提高MgB2带材高场下的临界电流密度方面具有显著效果. 在温度为4.2 K、磁场大于9 T条件下,C和SiC掺杂样品的临界电流密度与未掺杂样品相比均提高一个数量级以上. 掺杂样品高磁场下良好的临界电流性能主要归因于C对B的替代所产生的晶格畸变、位错等缺陷和局部成分变化而导致的有效晶内钉扎作用. 实验结果表明,SiC掺杂的MgB2带材之所以具有非常好的高场电流特性,和C掺杂的样品一样, C对B的替代起到十分关键的作用. 关键词: 2带材')" href="#">MgB2带材 C掺杂 SiC掺杂 临界电流性能  相似文献   

8.
碳/碳化硅(C/SiC)复合材料是应用于临近空间高超声速飞行器热防护的一种新型防热材料.国内外通过性能测试较多地研究了材料不同制备工艺对抗烧蚀性的影响,提出的抗烧蚀分析理论模型均基于液态氧化膜.而近期开展的C/SiC复合材料管式炉加热实验和试样微观形貌电镜表征显示:常压下,当温度低于1 696 K时,C/SiC复合材料氧化后表面形成了多孔的固态氧化膜.采用压汞法测试了氧化物孔隙.基于孔隙中的气体扩散行为,结合氧化反应动力学关系,建立了一种新的C/SiC复合材料惰性氧化模型.模型预测值与实验结果吻合良好,表明该惰性氧化模型对氧化膜厚度和质量损失具有较好的预测能力.   相似文献   

9.
The SiC/SiO2 deposition was performed to improve the oxidation resistive properties of carbon nanofiber (CNF) from electrospinning at elevated temperatures through sol-gel process. The stabilized polyacrylonitrile (PAN) fibers were coated with SiO2 followed by heat treatment up to 1000 and 1400 °C in an inert argon atmosphere. The chemical compositions of the CNFs surface heat-treated were characterized as C, Si and O existing as SiC and SiO2 compounds on the surface. The uniform and continuous coating improved the oxidation resistance of the carbon nanofibers. The residual weight of the composite was 70-80% and mixture of SiC, SiO2 and some residual carbon after exposure to air at 1000 °C.  相似文献   

10.
光限幅材料在激光轰击过程中的稳定性将在很大程度上决定其实用化价值。文章采用红外(IR)光谱、拉曼(Raman)光谱、透射电子显微镜(TEM)及孔结构分析等测试方法对纳米碳管(CNTs)复合光限幅材料在激光轰击过程中组成、结构的演变进行跟踪研究。结果表明,在强激光轰击下,复合体系中二氧化硅(SiO2)基质的组成未发生显著改变且网络结构趋于完整,具有较好的稳定性。掺杂CNTs石墨化程度提高,SiO2凝胶玻璃基质对其起一定的保护作用。轰击过程产生的热效应使得SiO2颗粒长大,由其堆积而成的孔随之增大。  相似文献   

11.
Composite structure of carbon fibers and SiC nanowires was fabricated by a simple chemical vapor deposition process, using commercial silicon dioxide and graphite powders as raw materials. The analysis of scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction indicates that the synthesized SiC nanowires distribute uniformly with high density in the used carbon fiber preform, which are perpendicular to and around each carbon fiber in a radial array. The SiC nanowires located at the interface of advanced composites is very favorable to the interfacial bonding between composites matrix and carbon fibers, thereby increasing the strength of composites greatly.  相似文献   

12.
Composite structure of carbon fibers and SiC nanowires was fabricated by a simple chemical vapor deposition process, using commercial silicon dioxide and graphite powders as raw materials. The analysis of scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction indicates that the synthesized SiC nanowires distribute uniformly with high density in the used carbon fiber preform, which are perpendicular to and around each carbon fiber in a radial array. The SiC nanowires located at the interface of advanced composites is very favorable to the interfacial bonding between composites matrix and carbon fibers, thereby increasing the strength of composites greatly.  相似文献   

13.
采用基于密度泛函理论的第一性原理平面波超软赝势法,建立了未掺杂,Al,N单掺杂和Al-N共掺杂3C-SiC的4种超晶胞模型,并分别对模型进行了几何结构优化,对比研究了其能带结构,态密度分布和介电常数.计算结果表明:Al掺杂会增大SiC的晶格常数,而N对SiC的晶格影响很小.Al掺杂会导致费米能级进入价带,使3C-SiC成为p型半导体,且带隙宽度略为加宽.N掺杂后的SiC其导带和价带均向低能端发生移动,带隙稍有减小.本征3C-SiC几乎不具备微波介电损耗性能.但是可以通过进行Al掺杂或N掺杂加以改善,Al掺杂后的效果尤为突出.计算发现Al-N共掺杂后的3C-SiC材料在8.2—12.4 GHz范围内其微波介电损耗性能急剧下降,与实验结果相符合,并对这一结果进行了讨论分析.  相似文献   

14.
Boron (B) or phosphorus (P) doped silicon nanowires (SiNWs) were synthesized by laser ablation. Local vibrational modes of B were observed in B-doped SiNWs by micro-Raman scattering measurements at room temperature. Fano broadening due to a coupling between the discrete optical phonon and a continuum of interband hole excitations was also observed in the Si optical phonon peak for B-doped SiNWs. An electron spin resonance signal due to conduction electrons was observed only for P-doped SiNWs. These results prove that B and P atoms were doped in substitutional sites of the crystalline Si core of SiNWs during laser ablation and electrically activated in the sites.  相似文献   

15.
《中国物理 B》2021,30(7):77303-077303
The effects of dry O_2 post oxidation annealing(POA) at different temperatures on SiC/SiO_2 stacks are comparatively studied in this paper. The results show interface trap density(Dit) of SiC/SiO_2 stacks, leakage current density(Jg), and time-dependent dielectric breakdown(TDDB) characteristics of the oxide, are affected by POA temperature and are closely correlated. Specifically, Dit, Jg, and inverse median lifetime of TDDB have the same trend against POA temperature, which is instructive for SiC/SiO_2 interface quality improvement. Moreover, area dependence of TDDB characteristics for gate oxide on SiC shows different electrode areas lead to same slope of TDDB Weibull curves.  相似文献   

16.
Si(100)衬底上n-3C-SiC/p-Si异质结构研究   总被引:1,自引:1,他引:0  
利用LPCVD方法在Si(100)衬底上获得了3C-SiC外延膜,扫描电子显微镜(SEM)研究表明3C-SiC/p-Si界面平整、光滑,无明显的坑洞形成。研究了以In和Al为接触电极的3C-SiC/p-Si异质结的I-V,C-V特性及I-V特性的温度依赖关系,比较了In电极的3C-SiC/p-Si异质结构和以SiGe作为缓冲层的3C-SiC/SiGe/p-Si异质结构的I-V特性,实验发现引入SiGe缓冲层后,器件的反向击穿电压由40V提高到70V以上。室温下Al电极3C-SiC/p-Si二极管的最大反向击穿电压接近100V,品质因子为1.95。  相似文献   

17.
The ablation properties and morphologies of carbon/carbon (C/C) composites with tungsten carbide (WC) filaments were investigated by ablation test on an arc heater and scanning electron microscopy. And the results were compared with those without tungsten carbide (WC) filaments tested under the same conditions. It shows that there is a big difference between C/C composites with and without WC filaments on both macroscopic and microscopic ablation morphologies and the ablation rates of the former are higher than the latter. It is found that the ablation process of C/C composites with WC filaments includes oxidation of carbon fibers, carbon matrices and WC, melting of WC and WO3, and denudation of WC, WO3 and C/C composites. Oxidation and melting of WC leads to the formation of holes in z directional carbon fiber bundles, which increases the coarseness of the ablation surfaces of the composites, speeds up ablation and leads to the higher ablation rate. Moreover, it is further found that the molten WC and WO3 cannot form a continuous film on the ablation surface to prevent further ablation of C/C composites.  相似文献   

18.
To protect carbon/carbon (C/C) composites from oxidation, a new type of oxidation protective coating has been produced by a two-step pack cementation technique. XRD and SEM analysis show, the coating obtained by the first step pack cementation was a porous β-SiC structure, and a new phase of CrSi2 was generated in the porous SiC coating after heat-treatment according to the second step pack cementation process. Oxidation test shows that, the weight loss of the SiC coated C/C is up to 11.26% after 5 h oxidation in air at 1773 K, and the weight loss of the CrSi2-SiC coated C/C composites is only 4.15% after oxidation in air at 1773 K for 34 h. The oxidation of C/C composites was primarily due to the reaction of C/C matrix and oxygen diffusing through the penetrable cracks in the coating.  相似文献   

19.
TaC coatings with hybrid, (2 0 0) and (2 2 0) texture structure were prepared on carbon/carbon (C/C) composites by isothermal chemical vapor deposition with TaCl5-Ar-C3H6 system. The residual stress, hardness and ablation behaviors of the different coatings were characterized by Raman spectra, nano-indentation and oxyacetylene flame ablation machine respectively. Results shown tensile stress exists in the TaC coatings and increases when texture orientation turns from hybrid to (2 2 0) and (2 0 0), while nano-indentation hardness of the coatings also obeys the same trend. The deposited coatings could improve the ablation-resistance properties of C/C composites effectively. The texture structure also had great effects on the ablation properties and ablation morphologies of the coatings. The mass ablation rate obviously decreases when the texture structure changes from hybrid orientation to (2 0 0) and (2 2 0) orientations. The hybrid orientation and (2 0 0) texture coatings exhibit coarse oxide morphologies with crater or some breakage existed; while the (2 2 0) texture coating shows dense, molten oxide morphology. The main ablation behaviors of the hybrid, (2 0 0) and (2 2 0) texture TaC coatings are oxidation and particle denudation and block denudation, oxidation and block denudation, oxidation and mechanical erosion and block denudation, respectively.  相似文献   

20.
(Amorphous-)SiC/TiC composites for resistive tubular heaters in HP/HT experiments were obtained via a polymer-precursor process. A slurry consisting of a commercial SiC-precursor polymer (allylhydridopolycarbosilane, AHPCS) and TiC powder as conductive filler was applied to the inner walls of zirconia insulation tubes, using a centrifugation-casting method. Resistive coatings with homogeneous thickness of ~200 μm were obtained. The heaters were tested in octahedral multi-anvil assemblies at ~10 GPa with simultaneous recording of heating voltage and current. Up to a maximum temperature of ~1800°C they showed temperature vs. power characteristics reproducible from batch to batch, with resistance decreasing from 0.08 to 0.02 Ω during heating. Microstructural characterization using SEM/EDX was carried out on the recovered SiC/TiC composite material, as well as on pristine resistive heaters directly after coating and curing to 230°C, and after additional pyrolysis at 900°C in argon. In all cases, a stable composite microstructure of an interpenetrating network of TiC particles with either silicon carbide polymer precursor or an amorphous SiC phase were found. The composites were characterized by XRD and thermogravimetry. Further improvement of coating procedure and materials combination (precursor/filler/insulator substrate) may result in advanced coatings, operational well beyond 2000°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号