首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
An ultra-low-loss coupler for interfacing a silicon-on-insulator ridge waveguide and a single-mode fiber in both polarizations is presented. The inverted taper coupler, embedded in a polymer waveguide, is optimized for both the transverse-magnetic and transverse-electric modes through tapering the width of the silicon-on-insulator waveguide from 450 nm down to less than 15 nm applying a thermal oxidation process. Two inverted taper couplers are integrated with a 3-mm long silicon-on-insulator ridge waveguide in the fabricated sample. The measured coupling losses of the inverted taper coupler for transverse-magnetic and transverse-electric modes are ∼ 0.36 dB and ∼ 0.66 dB per connection, respectively.  相似文献   

2.
Self-imaging theory is widely accepted as a good method in designing 1 × N multimode interference (MMI) couplers, but it is also true that self-imaging theory is not suitable for low-contrast structures. An improved self-imaging theory is proposed in this paper for the optimal design of low-contrast 1 × N MMI couplers. The average effective width of MMI waveguide and the average effective propagation constant of MMI waveguide are used as the basis to modify the conventional self-imaging theory. A direct calculation of the average effective width of low-contrast MMIs is presented. We use this approach in the optimal design of a 1 × 4 silica MMI coupler, and the results show that the improved self-imaging theory is more accurate than conventional self-imaging theory for low-contrast structures, the results also show that if the material parameters and the width of an MMI waveguide are fixed, the average effective width of the MMI waveguide will increase with the decrease of the height of the core layer.  相似文献   

3.
Yun-Sheng Ku  Chang-Neng Shauo 《Optik》2010,121(9):831-838
Mismatched optical couplers with variable widths of waveguide tapered by Hamming function are numerically investigated in the demand of short-length, broadband, and low crosstalk. We used global search algorithm and beam propagation method to seek optimal structure parameters of coupling waveguide. The coupler length is 3.6 mm within the C+L-band (1.53-1.61 μm) for variable widths of waveguide at crosstalk level of −35 dB. Comparison with constant width of waveguide, the constant width of waveguide has a coupler length of 4.4 mm and can only achieve −20 dB of crosstalk within the C-band (1.53-1.565 μm). Obviously, the waveguide with variable widths has the advantage over constant width for the demand of short-length, bandwidth, and low-crosstalk.  相似文献   

4.
In this paper, a novel MMI coupler, based on general interference, with tapered waveguide geometry has been proposed for reduction of coupling length. The coupling characteristics and power imbalance of the proposed structure are compared with conventional MMI structures by using a mathematical model based on sinusoidal modes. It is seen that the beat length for tapered MMI coupler with angle of taper ∼1.05° is reduced by ∼24% of that of conventional MMI coupler and the coupling characteristics obtained with the mathematical model, match well with those obtained by more sophisticated BPM computer aided design software. The power imbalance for tapered 3 dB MMI coupler is more sensitive to the wavelength than that for conventional 3 dB MMI coupler and variation of power imbalance with fabrication tolerance for both the MMI coupler is almost same.  相似文献   

5.
In this paper, the metal-insulator-metal (MIM) plasmonic directional coupler (PDC) with 45° waveguide bends based on surface plasmon polaritons (SPPs) excitation has been analyzed by the finite-difference time-domain (FDTD) numerical method. Effects of the variations of the coupler length and the metal gap thickness on the output powers and the propagation loss at 1550 nm wavelength have been studied. By choosing proper coupler lengths, power splitters with various output power ratios at 1550 nm wavelength and multi/demultiplexers, as some applications of the directional couplers have been proposed and their performances have been simulated.  相似文献   

6.
Abstract

A tunable add/drop filter based on Cascaded Mach Zehnder (CMZ) coupler using SiO2/silicon oxinitride (SiON) is presented with its mathematical model. The increase of filtered width (i.e., free spectral response) and lowering of crosstalk for this filter are optimized using its mathematical model with truncated binomial coupler distribution. The number of wavelength channels with 100 GHz (0.8 nm) channel spacing for 5-stage (M = 9, r = 2) truncated binomial CMZ filter with index contrast ~5% at ?20 dB crosstalk and the bending loss of 0.1 dB per MZ section are obtained as ~37 (free spectral range of 31 nm). It is seen that if during the fabrication process, waveguide core width w is increased or decreased by 0.1 μm (in percentage terms ~±6.6%), the crosstalk is slightly increased by ~7%. Thermal tuning for wavelength channels is achieved by thin film heater with low power thermooptic delay line structure which reduces the heating power by ~1.58 times in comparison to the conventional structure.  相似文献   

7.
A tunable add/drop filter based on Cascaded Mach Zehnder (CMZ) coupler using SiO2/silicon oxinitride (SiON) is presented with its mathematical model. The increase of filtered width (i.e., free spectral response) and lowering of crosstalk for this filter are optimized using its mathematical model with truncated binomial coupler distribution. The number of wavelength channels with 100 GHz (0.8 nm) channel spacing for 5-stage (M = 9, r = 2) truncated binomial CMZ filter with index contrast ∼5% at -20 dB crosstalk and the bending loss of 0.1 dB per MZ section are obtained as ∼37 (free spectral range of 31 nm). It is seen that if during the fabrication process, waveguide core width w is increased or decreased by 0.1 μm (in percentage terms ∼±6.6%), the crosstalk is slightly increased by ∼7%. Thermal tuning for wavelength channels is achieved by thin film heater with low power thermooptic delay line structure which reduces the heating power by ∼1.58 times in comparison to the conventional structure.  相似文献   

8.
In optical quantum communication, quantum state measurement is necessary. This paper proposes a new technique for realization of polarization filter based on planar lightwave circuit (PLC). This filter is used for quantum state discriminator in quantum communication and also as a Bell-state analyzer in quantum repeater. Electro-optics interferometer has been used in design and implementation of polarization filter. We use lithium niobate as a wafer material and Ti:LiNbO3 for waveguide. Two directional couplers have been used in this device. The length and spacing of these directional couplers have been designed so that each polarization is routed in specific output. The proposed device has one input and two outputs. If polarization of the input photon is vertical, then this photon will appear in output 1, otherwise if the input photon has horizontal polarization, it appears in output 2. For vertical polarization input, the power overlaps integral (POI) shows that isolation between two outputs is 14.96 dB. As to horizontal polarization input, the isolation between two outputs is 13.8 dB. The designed polarization filter has length of 33 mm and width of 60 μm. This device is very suitable for use in integrated optics.  相似文献   

9.
We present the results of an investigation of optical gain and noise figure for simultaneous multi-channel amplification of an erbium doped fibre amplifier (EDFA) under optimized pump condition. Different pump configurations with varying input signal levels show interesting features on gain flatness. In the experiment, population inversion along the fibre length which determines the gain-spectra and noise characteristics of the amplifier is adjusted through optimized fibre length and injected pump power in order to minimize the gain-tilt at C-band. It is observed that bi-directional pumping manifests the best combination of low noise and high gain of EDFA which are useful as in-line repeaters in WDM network. We obtain 30 ± 1.5 dB intrinsically flat small signal gain from 1538 nm to 1558 nm band of wavelength with noise figure <4 dB for 16-channel simultaneous amplification in a single stage EDFA without gain flattening filter.  相似文献   

10.
We demonstrate a UV-written polymer long-period waveguide grating (LPWG) coupler, which offers a bandwidth of ∼20 nm, a maximum coupling efficiency of ∼80% and ∼60% for the TE and TM polarizations, respectively, and a wavelength-tuning range over the (S + C + L)-band (∼140 nm) with a temperature control of ∼25 °C. The LPWG coupler has the potential to be developed into a practical broadband add/drop multiplexer for coarse wavelength-division-multiplexing applications.  相似文献   

11.
A simple and accurate novel normal mode analysis has been developed to take into account the effect of the non-uniform depth of polishing in the study of the transmission characteristics of optical waveguide devices based on loading of a side-polished fiber half-coupler with a multimode planar waveguide. We apply the same to design and fabricate a gain-flattening filter suitable for fiber amplifiers. The wavelength dependent filtering action of the overall device could demonstrate flattening of an EDFA gain spectrum within ±0.7 dB over a bandwidth of 30 nm in the C-band. Results obtained by the present analysis agree very well with our experimental results. This present analysis should be very useful in the accurate design and analysis of any SPF-MMOW device/component including side-polished fiber based sensors.  相似文献   

12.
The characteristics of hybrid fiber amplifier (HFA) are investigated. HFA is composed of three stages: short-length EDFA pre-stage, DCF Raman amplifier, and power boosting EDFA. HFA has low noise figure, high output power, and also wide input power dynamic range. Gain control method of HFA is presented experimentally, and the transient gain excursion is suppressed to less than 0.5 dB at 3 dB channel add-drop. HFA can be used as line amplifier in optical transmission link even combined with distributed Raman amplifier due to wide input power dynamic range. The transmission performance of HFA is better than EDFA by more than 1.0 dB of Q-factor in 720 km SMF transmission.  相似文献   

13.
In this paper, a thermally tunable add/drop multiplexer based on a Y symmetric cascaded Mach–Zehnder (CMZ) coupler is found to be polarization dependent due to the stress anisotropy caused by local heating to achieve thermooptic phase change. A thermooptic delay line structure with a stress releasing groove is proposed for reduction of the polarization dependence of a Y symmetric delay line coupler of high index contrast waveguides. It is seen that thermally tunable transmission characteristics of a Y symmetric CMZ device based on the proposed structure is almost polarization independent. It is also found that the reduction of the heating power in the proposed structure is ∼1.6 times smaller than that of the conventional structure. PACS  29.27.Fh; 52.38.Kd  相似文献   

14.
We propose optical fibre based filters employing dual-core resonant leaky structure for gain equalization of erbium doped fibre amplifier (EDFA). Spectral loss variation of the structure has been utilized to suppress gain peak and, thus, flatten overall gain profile in the C-band. We show 15.7 dB flat gain with ± 1.6 dB ripple in the wavelength range from 1525 nm to 1555 nm using a single filter and 18±0.7 dB gain using two cascaded filters.  相似文献   

15.
The gain flattening of the erbium doped fiber amplifier (EDFA) is one of the most important aspects in the EDFA which the gain is wavelength dependent. For the first time the limitation of EDFA gain optimizing for a 32-channel wavelength division multiplexing (WDM) systems is investigated and reported in this paper. In a 32-channel WDM system the most favorable flatness gain achieved was 23.16 ± 1.51 dB with an average noise figure of 5.70 dB. This outcome proposes that the method does not achieve a uniform spectral gain in a 32-channel WDM system that incorporates a bandwidth of around 25 nm. Based on the simulation results the intrinsic optimization of EDFA causes the poor SNR and peak signal power with great variation over a transmission distance of 480 km single mode fiber.  相似文献   

16.
Space radiation effect on EDFA for inter-satellite optical communication   总被引:1,自引:0,他引:1  
The erbium-doped fiber (EDF) has been irradiated by electron with a dose of 1000 krad to analyse the space radiation effect on EDF amplifier (EDFA) in inter-satellite optical communication. This is the first work to analyse the effect on actually applied systems. Three critical parameters of EDFA, most important for external module subsystems, have been tested. The output power comes down to −57.21 dBm and the noise figure (NF) climbs up to 18.14 dB at dose 1000 krad, when the input power is −2.00 dBm. Although there is a strong ability to recover after the radiation experiment, EDFA deterioration is really huge. Apart from that, the central wavelength of EDFA never changes. To guarantee the accuracy of analysis of the radiation effect on EDFA, WDM coupler and isolator are also irradiated with the EDF at the same time. According to the results of all the tests, the EDFA could be directly used in the low-radiation dose orbits if doses are less than 20 krad. And the radiation experiment data will also be a good reference for the design of the actual systems in inter-satellite optical communication with different dose orbits.  相似文献   

17.
The design of a vertical directional coupler between a three-dimensional plasmonic slot waveguide and a silicon waveguide is theoretically investigated in detail. It consists of two steps: the design of isolated plasmonic slot waveguide and silicon waveguide and the determination of the gap between the two waveguides and the length of a coupling region. The designed structure transfers 70.8% of the power carried by the silicon waveguide mode to the plasmonic slot waveguide mode when the gap is 150 nm and the coupling length is 2.14 μm. The wavelength dependence of our vertical directional coupler is also studied. The analysis shows that the amount of the transferred power changes slightly over a very wide wavelength range between 1.40 μm and 1.61 μm. Moreover, if we employ the fabrication technology for silicon photonics, it is quite tolerant to the variation of the length of its coupling section. Finally, the vertical directional coupler is considered for a polarizer.  相似文献   

18.
We report on a diode pumped passively Q-switched Nd:Gd0.64Y0.36VO4 laser with a Cr4+:YAG saturable absorber. We show experimentally that by using an appropriately coated GaAs wafer as output coupler, the Q-switched pulse width can be significantly suppressed. Stable Q-switched pulse train with pulse width of 2.2 ns, peak power of 26.3 kW, repetition rate of 15.38 kHz have been obtained under an absorbed pump power of 8.54 W. The physical mechanism of pulse width narrowing by the GaAs wafer was also experimentally investigated.  相似文献   

19.
从理论和实验上研究了带有高频二氧化碳激光写入的低成本长周期光纤光栅(LPFG)掺铒光纤放大器(EDFA).结果表明,单波长和多波长EDFA的性能都可以通过在掺铒光纤(EDF)中插入长周期光纤光栅用作自发辐射噪声(ASE)滤波器或增益平坦器来提高性能.优化设计了带LPFG噪声滤波器的线放EDFA,与没有LPFG噪声滤波器相比,线放的噪声和小信号增益分别被减小和提高了约0.5 dB和7 dB。通过在多波长EDFA的EDF中插入一个LPFG增益平坦滤波器的方法,获得了1.5 dB的增益平坦度,与没有LPFG平坦器相比,EDFA的噪声被减小了0.1 dB,增益被提高了1 dB.  相似文献   

20.
The L-band erbium-doped fiber amplifier (EDFA) of low noise figure and high clamped-gain using gain-clamped and double-pass configuration is presented in this paper. A total of five different configurations of EDFAs by reflection scheme with single forward pumping schemes are examined and compared here. Among these configurations, we first find the configuration of 1480-nm pumped L-band EDFA with optimum gain and noise figure value. To further minimize the gain variation, a fiber Bragg grating (FBG) with 1615-nm center wavelength and 1-nm bandwidth is determined and added in double-pass L-band EDFA. The gain variation and maximum noise figure of EDFA while channel dropping is investigated. As the number of channel dropping from 32 to 4, the L-band type-A EDFA keep the variation of gain within 2.9 dB and the maximum noise figure below 5 dB with each channel’s input power of −23 dBm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号