首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
全息制作不同晶面取向光子晶体模板   总被引:1,自引:0,他引:1       下载免费PDF全文
用单向光入射和单次曝光的激光全息技术制作了类金刚石结构, 此类金刚石结构有宽完全带隙和低介质折射率要求等优点. 在同一种光束配置下,引入恰当的匹配棱镜,用激光全息技术制作了大面积的类金刚石光学晶格不同晶面取向的亚微米周期结构. 满足如负折射效应等研究中所需的特殊晶面取向要求. 关键词: 激光全息技术 光学晶格 光子晶体  相似文献   

2.
In this work, we demonstrate theoretically and experimentally a left handed behaviour of a planar fishnet type metamaterial in the microwave regime. The fabrication procedure based on printed circuit board technology and mechanical micromachining technique is easy, unique and doesn’t involve optical lithography. The effective parameters have been extracted using the S parameter retrieval method and show a very good agreement between simulation and experiment. Using finite-element method based simulations and W-band (75 GHz–110 GHz) experiments. We measured a negative index of refraction of −4 at 85 GHz. The demonstrated left handed materials represent a step towards the easy fabrication of metamaterials with a negative refractive index that open a new path for the active manipulation of millimetre wavelengths.  相似文献   

3.
Ⅲ-Ⅴ族太阳电池效率的持续提升要求对能量转换材料的带隙宽度进行更细致划分,以实现对全光谱的高效利用。在短波红外波段,四元InGaAsP混晶材料因在带隙宽度和晶格常数的调节上具有很好的可操作性,是一种极具潜力的短波红外光电转换材料。本文对InGaAsP材料生长及子电池器件制备进行了研究,通过时间分辨荧光光谱、高分辨X射线衍射等表征手段对室温下晶格失配的InGaAsP材料进行了测试分析。实验结果表明,在一定程度负失配生长条件下,InGaAsP材料质量随着负失配程度逐渐提高。在后续电池制备过程中,一定程度负失配同样有助于电池器件性能提升,制备的单结电池开路电压由晶格匹配时的633 mV提高到负失配条件下的684 mV,从而为高效多结太阳电池的应用提供了新的技术路线。  相似文献   

4.
Materials with negative index of refraction have properties that are not naturally available. Such properties can be used to develop novel devices like the superlens which can surpass the diffraction limit. Optical cloaking can be achieved through this negative refractive index method. This article reviews the progress made in the area of negative refractive index materials from the first generation of negative electrical permittivity to the demonstration of negative index of refraction at optical frequency, with the relevant discussion on the physics of these materials. The prime focus of this article is on experimental demonstrations and fabrication related issues of negative refractive index materials which makes use of structured surfaces.  相似文献   

5.
Two types of optical metamaterials operating at near-IR and mid-IR frequencies, respectively, have been designed, fabricated by nanoimprint lithography (NIL), and characterized by laser spectroscopic ellipsometry. The structure for the near-IR range was a metal/dielectric/metal stack “fishnet” structure that demonstrated negative permittivity and permeability in the same frequency region and hence exhibited a negative refractive index at a wavelength near 1.7 μm. In the mid-IR range, the metamaterial was an ordered array of fourfold symmetric L-shaped resonators (LSRs) that showed both a dipole plasmon resonance resulting in negative permittivity and a magnetic resonance with negative permeability near wavelengths of 3.7 μm and 5.25 μm, respectively. The optical properties of both metamaterials are in agreement with theoretical predictions. This work demonstrates the feasibility of designing various optical negative-index metamaterials and fabricating them using the nanoimprint lithography as a low-cost, high-throughput fabrication approach. PACS 42.25.Bs; 81.16.Nd; 42.70.-a; 81.07.-b  相似文献   

6.
A novel hybrid organic-inorganic photocurable sol-gel material based on tantalum ethoxide and 3-trimethoxysilylpropylmethacrylate has been developed, characterised and used in the fabrication of optical waveguides and three-dimensional woodpile structures employing the single and two-photon polymerisation techniques, respectively. Single mode waveguides operating at 1310 and 1550 nm have been fabricated, optically characterised and their performances correlated to the material formulation. Three-dimensional woodpile structures exhibiting negligible shrinkage have been developed and their remarkable mechanical stability correlated to the molecular structure of the hybrid material. The overall fabrication process of these devices is described and it is shown that the refractive indices of the materials can be tailored by a precise control of the material composition allowing the successful fabrication of performing single mode waveguides.  相似文献   

7.
Metallic nanostructures have underpinned plasmonic-based advanced photonic devices in a broad range of research fields over the last decade including physics, engineering, material science and bioscience. The key to realizing functional plasmonic resonances that can manipulate light at the optical frequencies relies on the creation of conductive metallic structures at the nanoscale with low structural defects. Currently, most plasmonic nanostructures are fabricated either by electron beam lithography (EBL) or by focused ion beam (FIB) milling, which are expensive, complicated and time-consuming. In comparison, the direct laser writing (DLW) technique has demonstrated its high spatial resolution and cost-effectiveness in three-dimensional fabrication of micro/nanostructures. Furthermore, the recent breakthroughs in superresolution nanofabrication and parallel writing have significantly advanced the fabrication resolution and throughput of the DLW method and made it one of the promising future nanofabrication technologies with low-cost and scalability. In this review, we provide a comprehensive summary of the state-of-the-art DLW fabrication technology for nanometer scale metallic structures. The fabrication mechanisms, different material choices, fabrication capability, including resolution, conductivity and structure surface smoothness, as well as the characterization methods and achievable devices for different applications are presented. In particular, the development trends of the field and the perspectives for future opportunities and challenges are provided at the end of the review. It has been demonstrated that the quality of the metallic structures fabricated using the DLW method is excellent compared with other methods providing a new and enabling platform for functional nanophotonic device fabrication.  相似文献   

8.
A novel route for fabrication of compact optical system for X-rays is presented. It is based on the extensive use of tools developed for microelectronics and micromechanics: electron beam lithography, optical lithography and X-ray lithography. Virtually any shape can be obtained in order to match the system to the different needs. In this paper, we concentrate the attention on focusing system made by nested mirrors. A system for synchrotron radiation source and one for laboratory source have been designed and simulated by a ray-tracing code developed ad hoc. The main parameters and the fabrication tolerance errors have been evaluated. The first prototypes have been produced following different fabrication routes. They are presented here together with considerations for future developments.  相似文献   

9.
Direct‐write optical waveguide device fabrication is probably the most widely studied application of femtosecond laser micromachining in transparent dielectrics at the present time. Devices such as buried waveguides, power splitters, couplers, gratings, optical amplifiers and laser oscillators have all been demonstrated. This paper reviews the application of the femtosecond laser direct‐write technique to the fabrication of active waveguide devices in bulk glass materials.  相似文献   

10.
We theoretically investigate a thin single metal layer covered on sub-wavelength dielectric grating. Numerical simulations show that the structure has negative index in the normal direction at visible frequencies. Structural investigation demonstrates that the simultaneous negative permittivity and permeability at an overlapping frequency range are attributed to the metal cut-wire and “U”-shaped structure disassembled from the structure, respectively. Furthermore, parametric exploration for practical fabrication is presented.  相似文献   

11.
A simple fabrication approach for achieving nanoparticle patterns based on a room temperature chemically driven strategy is reported. Suitably engineered colloidal luminescent nanocrystals (NCs) (4 and 6 nm in diameter), namely organic capped and silica-coated negatively charged CdSe@ZnS NCs, have been selectively assembled onto defined domains in a binary hydrophobic/hydrophilic chemical pattern, purposely fabricated by combining microcontact printing and wet chemistry procedures. The goal of the work has been to investigate the experimental parameters governing the assembly process at molecular level, in order to elucidate factors regulating interactions at the interfaces. For this purpose, specific sets of conditions, namely substrate patterns and NCs with distinct surface functionalization, have been prepared and tested using different NC dispersing solvents. The NC assembly has been demonstrated driven by non-covalent forces, namely Van der Waals or electrostatic interactions occurring at the NC/substrate interface. The overall study has provided a comprehensive understanding of the role of solvent and molecular chemistry at interfaces in NC assembling. The obtained results can be valuable to set up reliable procedures for developing reproducible patterning protocols potentially useful for the fabrication of NC-based devices.  相似文献   

12.
针对惯性约束聚变(ICF)驱动装置中口径为400 mm400 mm薄型频率转换KDP晶体在45放置状态下产生的附加面形问题,采用有限元分析软件ANSYS,建立了以实测数据为基础的大口径薄型KDP晶体的应变模型和有加工误差的夹具模型,仿真分析了KDP晶体的加工误差和夹具的加工误差对KDP晶体附加面形的影响, 给出了KDP晶体附加面形变化的P-V值和RMS值。在此基础上,通过对KDP晶体的加工误差及夹具支撑表面不同类型和不同大小加工误差的分析和比较,得出:KDP晶体边缘的加工误差和夹具支撑表面的凹型加工误差是引起较大附加面形的原因之一,KDP晶体的加工误差也会导致其面形变化不均匀,而夹具支撑表面的凸型、波浪形加工误差和压条表面的随机加工误差对KDP晶体附加面形的影响相对较小,且支撑表面的随机加工误差引起的附加面形变化介于其他两者之间。  相似文献   

13.
Lirong Qiu  Weiqian Zhao  Xuemei Ding 《Optik》2006,117(12):563-568
Two models have been established using the basic definitions of super-resolution characteristic parameters for normalized spot size GA and Strehl ratio SA, of a three-zone axial super-resolution pupil filter with fabrication errors, to quantitatively analyze the effect of these fabrication errors on the axial super-resolution property. These new models established to describe the analytic relationship of GAe and SAe of a pupil filter with its fabrication errors and its transmission function A(ρ), phase function φ(ρ) and structural parameters, directly relate the super-resolution parameters of a three-zone axial super-resolution pupil filter to its fabrication errors to make the quantitative analyses of the effect of fabrication errors easier, thereby providing a theoretical basis for the analysis, design and fabrication of a three-zone axial super-resolution pupil filter. The models established for GAe and SAe have been used to analyze the effect of the fabrication errors of a pupil filter on its super-resolution property, with a three-zone phase-only pupil filters as example.  相似文献   

14.
The fabrication of Step-and-Flash Imprint Lithography (S-FIL) templates with line widths of 50 nm is described in this work. The structures have been patterned using a Ga+ focused ion beam (FIB) in a quartz template. FIB milling is generally accompanied with re-deposition effects, which represent a hindrance to densely patterned nanostructures required in most NIL applications. To reduce these re-deposition effects, in this research, xenon difluoride (XeF2) enhanced FIB etching was applied that also increases the material removal rates in comparison to pure kinetic ion sputtering. To optimise the process when using XeF2 gas the following ion scanning parameters have been examined: ion dose, beam current, dwell time and beam overlap (step size). It has been found that the assisting gases at very low doses do not bring significant etching enhancements whilst the sputtering rates have increased at high doses. Using the XeF2 gas-assisted etching, FIB structuring has been used to fabricate <100 nm structures onto quartz S-FIL templates. The presence of XeF2 considerably enhances the etching rate of quartz without any significant negative effects on the spatial resolution of the FIB lithographic process and reduces the template processing time.  相似文献   

15.
丁伟  汪滢莹  高寿飞  洪奕峰  王璞 《物理学报》2018,67(12):124201-124201
传统实芯光纤无法克服材料本身固有的非线性、色散、瑞利散射、光照损伤等缺陷,微结构空芯光纤有望解决这些本征性问题,可以为高功率激光、非线性光学、生物光子学、量子光学、光纤传感、光通信等应用提供一个理想而方便的媒介.在技术实现的道路上存在着光子禁带空芯光纤和反谐振空芯光纤两种选项.后者具有宽带导光和高激光损伤阈值等优点,但是一直受困于较高的传输损耗.这一情况随着最近几年人们对反谐振导光机理和光纤制作技术研究的快速推进正在逐渐发生转变.本文回顾了我们团队五年来开展的系统性的理论和实验工作,介绍了一套直观的可定量计算的反谐振导光机制理论,展示了最新研制的高性能光纤.通过合理利用光纤结构中的局域性和全局性特征,突破了半解析计算反谐振空芯光纤限制损耗的难题;通过对光纤拉制条件的精密控制,制作出了紫外到中红外波段的各型光纤;并对进一步提高光纤性能和在此基础上的更丰富的光学应用研究进行了展望.  相似文献   

16.
Ion implanted silicon planar varactor diodes of large capacitance variation ratio have been developed for UHF/VHF TV tuner circuits. The ratio of the capacitance variation achieved at 3 V to 25 V is between 6 and 7 with devices exhibiting low leakage and a required breakdown voltage of 30 V. Ion implantation has been used to introduce phosphorus into n-type silicon in the predeposition cycle. The device fabrication is completed using conventional diffusion techniques which also include thermal annealing. The fabrication process involves a minimum number of processing steps to produce low-cost devices. These diodes were used in a VHF TV tuner to obtain gain between 18 and 32 db in different bands, indicating high values of the quality factor of the varactors.  相似文献   

17.
Ni-Mn-Ga thin films have been fabricated by using magnetron sputtering technique under various substrate negative bias voltages. The effect of substrate negative bias voltage on the compositions and surface morphology of Ni-Mn-Ga thin films was systematically investigated by energy dispersive X-ray spectrum and atomic force microscopy, respectively. The results show that the Ni contents of the thin films increase with the increase of the substrate negative bias voltages, whereas the Mn contents and Ga contents decrease with the increase of substrate negative bias voltages. It was also found that the surface roughness and average particle size of the thin films remarkably decrease with the increase of substrate negative bias voltages. Based on the influence of bias voltages on film compositions, a Ni56Mn27Ga17 thin film was obtained at the substrate negative bias voltage of 30 V. Further investigations indicate that the martensitic transformation start temperature of this film is up to 584 K, much higher than room temperature, and the film has a non-modulated tetragonal martensitic structure at room temperature. Transmission electron microscopy observations reveal that microstructure of the thin film exhibits an internally (1 1 1) type twinned substructure. The fabrication of Ni56Mn27Ga17 high-temperature shape memory alloy thin film will contribute to the successful development of microactuators.  相似文献   

18.
The details of the fabrication of diffraction gratings in photoresist and GaAs, are reported. Optimum exposures, resulting in uniform, deep gratings in photoresist and GaAs have been found. Also, different etching times have been examined in order to define the best conditions for GaAs grating fabrication. Furthermore, the behaviour of the GaAs grating is shown in comparison with the adequate photoresist mask.  相似文献   

19.
Planar gratings have wide applications and to date, many methods for the fabrication of gratings have been reported. Ultrashort pulse lasers have been used for the machining of gratings primarily because they allow direct ablation and the manufacturing of sub-wavelength structures. In this paper, we present a novel direct ablation technique for the fabrication of planar gratings which makes use of the interference of ultrashort pulses in a common optical path configuration. This technique of grating fabrication not only simplifies the optical setup, but also immunizes the system to extraneous and inherent vibrations, thus enabling the manufacturing of planar gratings of good edge acuity. We have successfully fabricated planar gratings on a copper substrate. Received: 6 November 2001 / Accepted: 4 March 2002 / Published online: 10 September 2002 RID="*" ID="*"Corresponding author. Fax: +65/77-904-674, E-mail: mvenkata@ntu.edu.sg  相似文献   

20.
Self standing films of biopolymers like gelatine, collagen, and chitosan irradiated with single nanosecond or femtosecond laser pulse easily yield on their surface, a nanofoam layer, formed by a cavitation and bubble growth mechanism. The laser foams have interesting properties that challenge the molecular features of the natural extracellular matrix and which make them good candidates for fabrication of artificial matrix (having nanoscopic fibers, large availability of cell adhesion sites, permeability to fluids due to the open cell structure). As part of the mechanistic study, the dynamics of the process has been measured in the nanosecond timescale by recording the optical transmission of the films at 632.8 nm during and after the foaming laser pulse. A rapid drop 100→0% taking place within the first 100 ns supports the cavitation mechanism as described by the previous negative pressure wave model. As modeled a strong pressure rise (∼several thousands of bar) first takes place in the absorption volume due to pressure confinement and finite sound velocity, and then upon relaxation after some delay equal to the pressure transit time gives rise to a rarefaction wave (negative pressure) in which nucleation and bubble growth are very fast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号