首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have investigated the effect of lattice disorders near the surface of hard magnetic Nd2Fe14B grains on coercivity using artificial interfaces created by sputter depositing Nd on polished surface of Nd-Fe-B sintered magnets. The interfacial structure was manipulated by annealing the coated samples at 550 °C in vacuum with and without Ta cap. Nano-beam electron diffraction revealed a few nm thick disordered layer within the Nd2Fe14B phase at the Nd/Nd2Fe14B interface of a low coercivity sample, while a high coercivity sample showed a well-defined crystal structure of Nd2Fe14B near the NdOx/Nd2Fe14B interface.  相似文献   

2.
Recent studies have shown the effects of a post sintering heat treatment at 1000 °C for 24 h on the microstructure and magnetic properties of Pr-Fe-B/Nd-Fe-B magnets based on Nd16Fe76B8 and Pr16Fe76B8. In an attempt to understand the influence of environmental factors, an investigation into the effects of annealing under different degrees of vacuum for both types of sintered magnets has been carried out. The effect of annealing the Pr-Fe-B magnets at 1000 °C for 24 h resulted in a general increase in the magnetic properties, especially the intrinsic coercivity, although the degree of improvement appeared to be dependent on the initial annealing conditions (ambient pressure). Oxygen analysis of sintered and annealed magnets indicates a change in the nature of the grain boundary phases after the annealing treatment. The effect of annealing the Nd-Fe-B magnets at 1000 °C for 24 h resulted in a general decrease in the magnetic properties, especially the intrinsic coercivity.  相似文献   

3.
The fabrication of Nd11Dy4Fe76.5TM2.5B6 (TM=Co, Cu, Al, and Nb: at%) sintered magnets via a two-step sintering process was demonstrated. A densification of greater than 99% was achieved using the two-step sintering of the Nd-Fe-B powder. This process produced a sample with an average grain size of 6.2 μm in the Nd2Fe14B phase, resulting in an enhancement of the coercivity compared to that of the isothermally sintered sample. The suppression of grain growth was considered to be affected by the relatively low temperature during the two-step sintering and by the presence of a B-rich phase at the triple junction. Consequently, the two-step sintering process led to suppression of grain growth and a uniform grain size distribution, which resulted in improved magnetic properties, in particular in the intrinsic coercivity.  相似文献   

4.
Effects of interactions between grains with different alignment degrees on the coercivity and its angular dependence for Nd16(Fe0.8Co0.2)78B6 sintered magnets have been studied. The experiments show that the intrinsic coercivity jHc decreases with enhancing grain alignment (decreasing alignment coefficient σ), the coercivity jHc(θ) increases with increasing angle θ between the applied field and the texture axis of the magnets and the variation ratio is larger for the magnets with better grain alignment. The coercivity of the magnets should be determined by the critical field making the moment of individual grains reverse and the interactions between the grains. For the sintered magnets composed of the grains with μm size, the magnetostatic interaction between the grains is stronger than the exchange coupling interaction and it makes the coercivity of magnet increase with increasing alignment coefficient σ. Taking into account the intergrain interactions, the starting field theory of coercivity is in good agreement with the experimental results for Nd16(Fe0.8Co0.2)78B6 sintered magnets.  相似文献   

5.
The effect of Mo and MoS2 additions on the magnetic and microstructure properties has been investigated in Nd-Fe-Ga-B sintered magnets. Coercivity can be increased by both the additions, but the MoS2 addition provides the larger increase per Mo atom for up to 0.6 at.% Mo. Microstructure investigation reveals a new amorphous intergranular Ga rich phase. This phase forms a thin layer in the grain boundaries and leads to a wetting behavior of the grain boundary phase, therefore increasing the coercivity. Molybdenum addition in the form of MoS2 is found to modify the Nd2Fe14B phase, rather than form new minority phases, and the coercivity enhancement of the magnet is due to the increased anisotropy field of the hard magnetic phase.  相似文献   

6.
The effects of varying Nd-contents on the magnetic properties of Nd12.8+xFe81.2−xyzCoyGazB6 ribbons and the resulting die-upset magnets have been investigated. It was found that the Nd content has a significant effect on both magnetic properties and texture of the die-upset magnets. An optimum Nd content exhibits good texture, while both Nd-lean and excessively Nd-rich Nd-Fe-B alloys lead to unsatisfactory textures. The magnetic properties and texture of the die-upset magnets strongly deteriorated with a further increase in the Nd-content. The thermo-mechanical characteristics and the formation mechanism of two kinds of cracks in backward-extruded ring magnets have also been investigated.  相似文献   

7.
冯维存  高汝伟  李卫  韩广兵  孙艳 《中国物理》2005,14(8):1649-1652
本文采用统计平均方法研究了软、硬磁性晶粒尺寸及相分布对Nd2Fe14B/α-Fe纳米复合永磁材料矫顽力的影响。计算结果表明:对于单相纳米硬磁材料,磁体矫顽力随着硬磁性晶粒尺寸的减小而降低;对于软、硬两磁性相组成的Nd2Fe14B/a-Fe纳米复合永磁材料,两相的随机分布将导致磁体矫顽力随硬磁性晶粒尺寸的减小呈现极大值。本文的计算结果还表明当硬磁性晶粒尺寸大于软磁性晶粒的最佳尺寸时(15nm),具有多层膜结构的Nd2Fe14B/a-Fe纳米复合永磁材料将比两相随机分布时具有更大的矫顽力。  相似文献   

8.
《中国物理 B》2021,30(6):67503-067503
We investigate the effects of post-sinter annealing on the microstructure and magnetic properties in B-lean Nd–Fe–B sintered magnets with different quantities of Nd–Ga intergranular additions. The magnet with fewer Nd–Ga additions can enhance 0.2 T in coercivity, with its remanences nearly unchanged after annealing. With the further increase of the Nd–Ga addition, the annealing process leads coercivity to increase 0.4 T, accompanied by a slight decrease of remanence. With the Nd–Ga addition further increasing and after annealing, however, the increase of coercivity is basically constant and the change of remanence is reduced. Microstructure observation indicates that the matrix grains are covered by continuous thin grain boundary phase in the magnets with an appropriate Nd–Ga concentration after the annealing process. However, the exceeding Nd–Ga addition brings out notable segregation of grain boundary phase, and prior formation of part RE6 Fe13 Ga phase in the sintered magnet. This prior formation results in a weaker change of remanence after the annealing process.Therefore, the diverse changes of magnetic properties with different Nd–Ga concentrations are based on the respective evolution of grain boundary after the annealing process.  相似文献   

9.
The demagnetization curve as a function of intensity of the inter-grain exchange interaction was calculated for single-phase nanocrystalline Nd-Fe-B magnets by use of the finite-element technique of micromagnetics. Also, the strength of the exchange interaction was estimated as a function of the Nd content x for the nanocrystalline NdxFe94-xB6 magnets by comparing the above result with the experimental relation between iHc and x for the magnets. We found that the inter-grain exchange interaction decreases with the increase of x, are ≈70% and ≈60% of the inter-grain exchange interaction for x=15.5(μ0iHc≈2.0T) and x=19(μ0iHc≈2.3T), respectively.  相似文献   

10.
Microstructures of fine grained Nd-Fe-B sintered magnets that were produced by the pressless process were investigated to understand the origin of the sudden coercivity decrease below a certain grain size. The intrinsic coercivity is inversely proportional to ln D2 with the highest coercivity of 17 kOe at D∼4.5 μm, below which the coercivity drops as the grain size decreases. We found that the degradation of the coercivity of the magnet with a grain size of 3 μm was mainly caused by the inhomogeneous distribution of fcc-Nd oxide whose volume fraction increased with respect to the dhcp Nd-rich phase.  相似文献   

11.
The Fe65B22Nd9Mo4 nanocomposite permanent magnets in the form of a rectangular cross sectioned rod have been prepared by annealing the amorphous precursors. The thermal behavior, structure and magnetic properties of the magnets have been investigated by differential scanning calorimetry, X-ray diffractometry, electron microscopy and magnetometry techniques. The as-cast Fe65B22Nd9Mo4 alloy showed soft magnetic properties, which changed into magnetically hard after annealing. Results provoke that the magnetic properties of the alloy are sensitive to thermal processing conditions. The optimum hard magnetic properties with a remanence (Br) of 0.56 T, coercivity (iHc) of 920.7 kA/m and maximum energy product (BH)max of 50.15 kJ/m3 were achieved after annealing the alloy at 983 K for 10 min. The good magnetic properties of Fe65B22Nd9Mo4 magnets are ascribed to the exchange coupling between the nano-scaled soft α-Fe, Fe3B and hard Nd2Fe14B magnetic grains.  相似文献   

12.
To increase coercivity and thermal stability of sintered Nd–Fe–B magnets for high-temperature applications, a novel terbium sulfide powder is added into(Pr_(0.25)Nd_(0.75))_(30.6)Cu_(0.15)Fe_(bal)B_1(wt.%) basic magnets. The effects of the addition of terbium sulfide on magnetic properties, microstructure, and thermal stability of sintered Nd–Fe–B magnets are investigated.The experimental results show that by adding 3 wt.% Tb_2S_3, the coercivity of the magnet is remarkably increased by about 54% without a considerable reduction in remanence and maximum energy product. By means of the electron probe microanalyzer(EPMA) technology, it is observed that Tb is mainly present in the outer region of 2:14:1 matrix grains and forms a well-developed Tb-shell phase, resulting in enhancement of HA, which accounts for the coercivity enhancement.Moreover, compared with Tb_2S_3-free magnets, the reversible temperature coefficients of remanence(α) and coercivity(β) and the irreversible flux loss of magnetic flow(hirr) values of Tb_2S_3-added magnets are improved, indicating that the thermal stability of the magnets is also effectively improved.  相似文献   

13.
成问好  李卫  李传健  潘伟 《物理学报》2001,50(11):2226-2229
分析了微观结构和热处理工艺对矫顽力的影响,发现在矫顽力一定的情况下,磁体的微观结构越“差”,则保证不同批次磁体矫顽力变化不大于某一给定值所需的工艺条件就越严格;反之则越宽松.就同一炉产品而言,微观结构越好的磁体,其矫顽力受烧结(热处理)炉温度梯度的影响越小,其结果是该炉产品的一致性越高.反之,受温度梯度的影响越大,磁体的一致性也就越低.该研究结果说明:在条件许可的情况下,应首先考虑通过改善磁体的微观结构来提高磁性能一致性. 关键词: Nd-Fe-B永磁体 微观结构 内禀矫顽力 一致性  相似文献   

14.
Effects of post-sintering annealing on the microstructure and coercivity have been investigated for the Al85Cu15-added (Pr, Nd)14.8Fe78.7B6.5 sintered magnets. It is found that the optimum annealing temperature at which the coercivity iHc reaches a maximum decreases from 550 °C for the magnets added with 0.3% and 0.6% Al85Cu15 to 480 °C for the magnets added with 0.9% and 1.2% Al85Cu15. The decrease in optimum annealing temperature is related to the precipitation of Al-Cu or (Pr, Nd)−Cu liquid phase among (Pr, Nd)-rich phases during annealing. Existence of Al-Cu or (Pr, Nd)−Cu liquid phase is beneficial to dissolve the irregularities of (Pr, Nd)2Fe14B grain interface and increase the quantities of (Pr, Nd)-rich phases at the grain boundary, thus optimizing the grain boundary microstructure. The modifications of the microstructure are helpful to decouple the exchange interaction between (Pr, Nd)2Fe14B hard magnetic grains, thereby increasing the coercivity.  相似文献   

15.
周贝贝  李向斌  曹学静  严高林  闫阿儒 《中国物理 B》2016,25(11):117504-117504
To investigate the coercivity,corrosion resistance,and thermal stability of Nd-Fe-B magnets,their properties were investigated at room and high temperature before and after doping with Dy_(80)Ga_(20)(at.%) powder.The coercivity of the magnets increased from the undoped value of 12.72 kOe to a doped value of 21.44 kOe.A micro-structural analysis indicates that a well-developed core-shell structure forms in the magnets doped with Dy_(80)Ga_(20) powder.The improvement in magnetic properties is believed to be related to the refined and uniform matrix grains,continuous grain boundaries,and a hardened(Nd,Dy)_2Fe_(14)B shell surrounding the matrix grains.Additionally,the doped magnets exhibit an obvious improvement in thermal stability.For the magnets with added Dy_(80)Ga_(20) powder,the temperature coefficients of remanence(α) and coercivity(β) increased to-0.106%℃~(-1) and-0.60%℃~(-1) over the range 20-100 ℃,compared to temperature coefficients of-0.117%℃~(-1)(α) and-0.74%℃~(-1)(β) in the regular magnets without Dy_(80)Ga_(20) powder.The irreversible loss of magnetic flux(Hirr) was investigated at different temperatures.After being exposed to 150 ℃ for 2 h,the Hirr of magnets with 4 wt.%Dy_(80)Ga_(20) decreased by ~95%compared to that of the undoped magnets.The enhanced temperature coefficients and Hirr indicate improved thermal stability in the doped Nd-Fe-B magnets.The intergranular addition of Dy_(80)Ga_(20) also improved the corrosion resistance of the magnets because of the enhanced intergranular phase.In a corrosive atmosphere for 96 h,the mass loss of the sintered magnets with 4 wt.%Dy_(80)Ga_(20) was 2.68 mg/cm~2,less than 10%of that suffered by the undoped magnets(28.1 mg/cm~2).  相似文献   

16.
According to the decoupling hypothesis for magnetic grains, the coercivity in sintered Nd–Fe–B magnets is increased after Cu doping, which is due to the formation of non-magnetic grain boundaries. However, this method partially fails, and ferromagnetic Fe-segregation occurs at the grain boundary. We discovered both experimentally and through calculation that the Fe content at the grain boundaries can be tuned across a wide range by introducing another element of Ag. Segregated Fe at high temperature at the grain boundary re-dissolves into Nd2Fe14B grains during annealing at low temperature. Both configurable and magnetic entropies contribute a large driving force for the formation of nonmagnetic grain boundaries. Almost zero Fe content could be achieved at the grain boundaries of sintered Nd–Fe–B magnet.  相似文献   

17.
The effect of gallium added by blending method on the magnetic properties, thermal stability and microstructure of Nd16.5Dy16.0Fe53.45Co13.0B1.05 (wt%) sintered magnets was investigated. The experimental results show that an appropriate Ga addition can markedly increase the coercivity, reduce the irreversible loss and slightly enhance the remanence. For instance, by adding 0.5 wt% Ga, the coercivity is increased from 1232 to 1819 kA/m; the irreversible loss after being exposed at 200°C for 0.5 h is reduced from above 33% to below 5%. Microstructure analyses show that the grain boundaries of the magnets with and without Ga addition are substantially different. The grain boundaries of the Ga-free magnet are meandrous. On the other hand, most of the boundaries of Ga-containing magnets are straight and smooth. These characteristics can be explained by the appearance of new phases during sintering process.  相似文献   

18.
Nanophase hard magnets   总被引:2,自引:0,他引:2  
The dramatic developments that occurred in nanophase hard magnetic materials over the last two decades are reviewed. Much of the research was done after the discovery of Nd2Fe14B-based magnets in an attempt to develop more economical Fe-based magnets with better properties. This led to the discovery of 1 : 12-based magnets, 2 : 17 nitrides and carbides, and more recently, to nanocomposite magnets consisting of a fine mixture of exchange coupled soft and hard phases. Currently, much emphasis is devoted to nanocomposite films consisting of nanoparticles of a high anisotropy material embedded in a non-magnetic matrix because they have a great potential for applications in high density recording media.  相似文献   

19.
The effect of Co on the thermal stability and impact toughness of sintered Nd–Fe–B magnets has been investigated. The results showed that the addition of Co decreased the intrinsic coercivity and the temperature coefficient of remanence (α), and increased the temperature coefficient of coercivity (β) for sintered Nd–Fe–B magnets. The impact toughness of sintered Nd–Fe–B magnets with the addition of Co first decreases, reaches a minimum, and then starts to increase. The possible reasons for increasing the temperature coefficients of coercivity (β) for sintered Nd–Fe–B magnets were analyzed, and the relations between the microstructure and impact toughness of sintered Nd–Fe–B magnets were studied.  相似文献   

20.
Magnetic microstructures of a high coercivity Nd-Fe-B sintered magnet in remanent and incomplete thermal demagnetization states have been revealed by using magnetic force microscopy (MFM) with high coercivity tips. MFM results indicate that specimens in a remanent state are single domain and their magnetizations align with the direction of the magnetizing field. The evolution of the magnetic domains with annealing temperatures shows that the thermal demagnetization process consists of four stages. Nd-Fe-B should be heat-treated at about 120-170 °C to make its magnetic state stable before practical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号