首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The morphology of Ga2O3 layers deposited on a silicon substrate by pulse laser deposition is studied using scanning electron microscopy in the thickness range of 30–200 nm. Using spectroscopic ellipsometry in the wavelength range from 250 to 900 nm, the thickness of layers and dispersion of their optical parameters (complex pseudodielectric function ε, refractive and absorptive indices) have been determined and the fraction of voids has been estimated in the scope of the Bruggeman effective medium approximation. In the spectrum of the imaginary part ε2, there is observed an increase in values in the region of energy E = 4.8 eV corresponding to the direct interband transition in the Ga2O3 structure. X-ray structure analysis showed the presence of peaks typical for the β-Ga2O3 structure. The results of the investigations can be used for the formation of wide-bandgap gallium oxide layers in developing devices of power electronics and in creating optoelectronic devices for the UV range.  相似文献   

2.
Oxysulphide glasses have been prepared in the pseudo binary system GeS2.6–Ga2O3. The effect of addition of gallium oxide has been evaluated in term of thermal and optical properties. Structural behavior has been studied using Raman spectroscopy. Samples have been exposed above band gap energy (3.52 eV) varying power density and exposure time. Giant photoexpansion and photorefraction is obtained for samples containing 20% of Ga2O3.  相似文献   

3.
Oxysulfide systems undergo structural transformations upon illumination with laser light of near bandgap energy, as well as chalcogenide materials (glasses and films). In this paper, photoinduced effects such as photoexpansion and photobleaching were observed in GeS2+Ga2O3 (GGSO) films synthesized by electron beam evaporation. A surface expansion of the thin films and a shift to shorter wavelengths of the optical absorption edge were observed as a result of UV laser irradiation (wavelength of 351 nm) and they are dependent on laser power density, exposure time and film composition. These parameters were varied to evaluate and enhance the observed effects. In addition, the irradiated GGSO samples exhibited a decrease in refractive index, measured with a prism-coupling technique, which makes these films suitable candidates for applications as gratings and waveguides in integrated optics.  相似文献   

4.
High Erbium-doped glass showing the wider 1.5-μm emission band is reported in the Bi2O3–B2O3–Ga2O3 system and its thermal stability and optical properties such as absorption, emission spectra, absorption and stimulated emission cross-sections and fluorescence lifetime are investigated. Compared with other glass hosts, the gain bandwidth properties of high Er3+ content in BBG glass are better than those of tellurite, germanate, silicate and phosphate glasses. The broad and flat 4I13/24I15/2 emission and the larger stimulated emission cross-section of Er3+ ions around 1.5 μm enable it to be used as a host material for potential broadband optical amplifiers at C and L bands in the microchip configuration.  相似文献   

5.
The highly accurate all electrons full potential linearized augmented plane wave method is used to calculate structural, electronic, and optical properties of cubic perovskites CsPbM3 (M=Cl, Br, I). The theoretically calculated lattice constants are found to be in good agreement with the experimentally measured values. It is found that all of these compounds are wide and direct bandgap semiconductors with bandgap located at R-symmetry point, while the bandgap decreases from Cl to I. The electron densities reveal strong ionic bonding between Cs and halides but strong covalent bonding between Pb and halides. Optical properties of these compounds like real and imaginary parts of dielectric functions, refractive indices, extinction coefficients, reflectivities, optical conductivities, and absorption coefficients are also calculated. The direct bandgap nature and high absorption power of these compounds in the visible-ultraviolet energy range imply that these perovskites can be used in optical and optoelectronic devices working in this range of the spectrum.  相似文献   

6.
武佩  胡潇  张健  孙连峰 《物理学报》2017,66(21):218102-218102
石墨烯是一种由单层碳原子紧密排列而形成的具有蜂窝状结构的二维晶体材料,特殊的结构赋予了其优异的性能,如高载流子迁移率、电导率、热导率、力学强度以及量子反常霍尔效应.由于石墨烯优异的特性,迅速激起了人们对石墨烯研究以及应用的热情.石墨烯沉积或转移到硅片后,其器件构建与集成和传统硅基半导体工艺兼容.基于石墨烯的硅基器件与硅基器件的有机结合,可以大幅度提高半导体器件的综合性能.随着石墨烯制备工艺和转移技术的优化,硅基底石墨烯器件将呈现出潜在的、巨大的实际应用价值.随着器件尺寸的纳米化,器件的发热、能耗等问题成为硅基器件与集成发展面临的瓶颈问题,石墨烯的出现为解决这些问题提供了一种可能的解决方案.本文综述了石墨烯作为场效应晶体管研究的进展,为解决石墨烯带隙为零、影响器件开关比的问题,采用了量子限域法、化学掺杂法、外加电场调节法和引入应力法.在光电器件研究方面,石墨烯可以均匀吸收所有频率的光,其光电性能也受到了广泛的关注,如光电探测器、光电调制器、太阳能电池等.同时,石墨烯作为典型的二维材料,其优越的电学性能以及超高的比表面积,使其作为高灵敏度传感器的研究成为纳米科学研究的前沿和热点领域.  相似文献   

7.
张晓青  贺号  胡明列  颜鑫  张霞  任晓敏  王清月 《物理学报》2013,62(7):76102-076102
本文基于有限元法研究了直立生长于GaAs衬底的GaAs纳米线的光场响应和光场增强性质. 实验使用多个波长的飞秒激光脉冲激发GaAs纳米线, 测得了较高效率的二次谐波信号, 并首次使用宽带超连续飞秒脉冲 (1000–1300 nm) 在纳米线上获取了宽带、无杂散荧光噪声的二次谐波信号. 这种高效的二次谐波产生过程主要归因于纳米结构引起的局域场增强效应. 本文阐明了GaAs纳米线的二次谐波倍频特性, 这些结果对于其在纳米光学中的光器件、 光集成等领域的进一步研究和实际应用具有很好的参考价值. 关键词: GaAs纳米线 二次谐波 飞秒激光  相似文献   

8.
Thin films of oxide materials are playing a growing role as critical elements in optoelectronic devices and nanoscale devices. In this work, thin films of some typical oxides such as WO3, Ga2O3 and SrTiO3 were investigated. We present measurements of those films, using various optical techniques like photoconductivity transients over a wide time range and photo-Hall measurements. Analysis of the photo-Hall and photoconductivity data permits the determination of the contribution to the photoconductivity made by the carrier mobility and concentration. A model for dispersive carrier transport was proposed to explain the relaxation of the photoconductivity in oxide thin films. In addition, photoluminescence characterization was used to study microstructures and energy band in oxide thin films. The broad emission from oxide host, consisting of several band peaks, was likely due to a recombination process with several possible paths. The dependence of the luminescent intensity on the annealing atmosphere was associated with the presence of oxygen vacancies. It is suggested that our optical analysis efforts have improved the understanding of oxide thin films, and this should lead to the necessary advancements in a variety of devices.  相似文献   

9.
《Current Applied Physics》2018,18(5):567-575
The rapid demand of photodetector is increasing day by day due to its versatility of applications that affect our lives. However, it is still very challenging to produce low-cost high-performance broadband photo-detector that can detect light from near infrared to the ultraviolet frequency range for medical diagnosis and visible light communication applications. Regarding this, low-cost antimony selenide (Sb2Se3), with direct energy gap and strong light absorption over a wider range from near infrared to ultraviolet frequency, is considered a promising candidate material for such kind of applications. Therefore, to expose its hidden potential, detailed analysis of its structural, electronic and optical properties is very essential. To accomplish this purpose, different schemes of the first-principles calculations are used in this study. Structural properties of Sb2Se3 are calculated by first-principles methods realized within density functional theory (DFT) framework. Whereas, to compute the quasiparticle (QP) band structure, excitonic and optical properties, many-body perturbation theory (MBPT) based on one-shot GW (G0W0) and Bethe-Salpeter equation (G0W0-BSE) approaches are used. Our DFT calculations show that Wu-Cohen GGA (WC-GGA) reproduces lattice parameters of Sb2Se3 material consistent with the experimental measurements. Similarly, G0W0 calculations confirm the Sb2Se3 a direct bandgap energy material of 1.32 eV and show good agreement with the experimental results. Similarly, the results on the optical properties of Sb2Se3 with the inclusion of electron-hole interaction show that the exciton energy of the material is 1.28eV while its corresponding plasma energy is 10.86 eV. These values show that the investigated material can absorb photons from near infrared to ultraviolet wavelengths. It is, therefore, anticipated that this material will be useful for new-generation optoelectronic applications from near infrared to ultraviolet wavelengths.  相似文献   

10.
The optoelectronic properties of a selected group of Cu-III-VI2 chalcopyrites-based materials are deeply investigated by using the modified Becke-Johnson (mBJ) potential, combined with DFT + U approach. The obtained results are further used to calculate these materials’ theoretical efficiency limit for solar cell applications. The bandgap findings indicate a reliable ±0.2 eV agreement. After evaluating the electronic and optical properties, the spectroscopic limited maximum efficiency (SLME) model was used as a metric for the screening. Besides the bandgap value considered in the Shockley–Queisser model, the SLME requires that the absorption spectra, the radiative recombination losses, and the absorber layer thickness must be considered to adequately calculate the efficiency of considered cells. Our findings unveil that some candidates, such as CuInS2, where an SLME of 30.25% is achieved at a film width of 500 nm can be classified in the category of materials with higher power conversion efficiency.  相似文献   

11.
采用射频磁控溅射和N2气氛退火处理制备了多晶Ga2O3薄膜和Cu掺杂Ga2O3薄膜.用X射线衍射仪、紫外-可见分光光度计、荧光光谱仪对Ga2O3薄膜和Cu掺杂Ga2O3薄膜的结构和光学性能进行了表征.结果表明,Cu掺杂后Ga2O3薄膜的结晶质量变差,透过率明显降低,吸收率增加,光学带隙减小.本征Ga2O3薄膜在紫外、蓝光和绿光出现了发光带,Cu掺杂后紫外和蓝光发射增强,且在475 nm 处出现了一个新的发光峰.  相似文献   

12.
《Current Applied Physics》2015,15(10):1160-1167
Due to growing demand on discovering new materials for light-emitting diodes devices, many efforts were made to discover and characterize new inorganic materials such as phosphors. Using the full potential method within density functional theory the electronic and optical properties of BaAl2Si3O4N4 and BaAlSi4O3N5 semiconductors have been investigated. The electronic structure and the optical properties of these phosphors were calculated through a reliable approach of modified Beck-Johnson (mBJ) approach. We found that BaAl2Si3O4N4 and BaAlSi4O3N5 have wide direct band gaps positioned at Γ about 5.846 and 4.96 eV respectively. The optical properties, namely the dielectric function, optical reflectivity, refractive index and electron energy loss, are reported for radiation up to 15 eV. Our study suggests that BaAl2Si3O4N4 and BaAlSi4O3N5 could be promising materials for applications in the LEDs devices and optoelectronics areas of research.  相似文献   

13.
赵银女 《光子学报》2014,41(10):1242-1246
β-Ga2O3是一种宽带隙半导体材料,能带宽度Eg≈5.0eV,在光学和光电子学领域有广泛的应用。用射频磁控溅射方法在Si衬底和远紫外光学石英玻璃衬底制备了本征β-Ga2O3薄膜及Zn掺杂β-Ga2O3薄膜,用紫外 可见分光光度计、X射线衍射仪、荧光分光光度计对本征β-Ga2O3薄膜及Zn掺杂β-Ga2O3薄膜的光学透过、光学吸收、结构和光致发光进行了测量,研究了Zn掺杂和热退火对薄膜结构和光学性质的影响。退火后的β-Ga2O3薄膜为多晶结构,与本征β-Ga2O3薄膜相比,Zn掺杂β-Ga2O3薄膜的β-Ga2O3(111)衍射峰强度变小,结晶性变差,衍射峰位从35.69°减小至35.66°。退火后的Zn掺杂β-Ga2O3薄膜的光学带隙变窄,光学透过降低,光学吸收增强,出现了近边吸收,薄膜的紫外、蓝光及绿光发射增强。表明退火后Zn掺杂β-Ga2O3薄膜中的Zn原子被激活充当受主。  相似文献   

14.
The electronic and optical properties of AgAlO2 were determined by using Generalized Gradient Approximation (GGA) suggested by Perdew–Burke–Ernzerhof (PBE) with the addition of Hubbard potential along with linearized augmented plane wave pseudopotential. Our computed band structure infers that our calculated bandgap (1.5?eV) is closer to the experimental (2.81?eV) as compare to the previous theoretical values (1.16?eV). The investigated band structure also reflects that AgAlO2 is an indirect semiconductor material. The investigated atomic positions and lattice constants are in good agreement with the experimental values than the earlier theoretical values. From presented optical properties one can observe that AgAlO2 is a good conducting material. The absorption spectrum infers that AgAlO2 is an expensive material for photo-electronic devices or solar-cell applications.  相似文献   

15.
ABSTRACT

Direct bandgap semiconductors are very essential to fulfil the demand for the advancement in optoelectronic devices. Therefore it is important to predict new potential candidates having such unique features. In current work, Sr3X2 (X=N, P, As, Sb and Bi) compounds have been reported for the first time by well trusted FP-APW+lo method. For the better prediction of the energy band gap, mBJ is used alongwith routine generalised gradient approximation (GGA). The results show small and direct energy band gaps at Γ-Γ symmetry points with magnitude in the range from 0.62?eV (Sr3P2) to zero energy band gap (Sr3Bi2). In partial density of state Sr-d state and X-p state are contributed in the band structure. The compounds show mostly covalent bonding nature. The frequecy dependent optical properties in the linear optical range are also investigated.  相似文献   

16.
The tunable growth of In-doped Ga2O3 (Ga2O3:In) and Ga-doped In2O3 (In2O3:Ga) nanowires (NWs) on Au-coated Si substrates was achieved by modulating the amount of water vapor in flowing Ar at 700–750 °C via carbothermal reduction of Ga2O3/In2O3 powders with a fixed weight ratio. In Ar, only the Ga2O3:In NWs were grown, while in wet Ar the In2O3:Ga NWs were synthesized instead. The Ga concentration in In2O3 NWs decreased with the increment of water vapor in flowing Ar. The growth of both Ga2O3:In and In2O3:Ga NWs followed the vapor–liquid–solid process. The In and Ga doping induced a redshift and a blueshift in the optical bandgaps of Ga2O3 NWs and In2O3 NWs, respectively. The growth mechanisms and optical properties of Ga2O3:In and In2O3:Ga NWs were discussed.  相似文献   

17.
制备了Tm3+(8.0mol%)掺杂(77-x)GeO2-xGa2O3-8Li2O-10BaO-5La2O3(x=4,8,12,16)系列玻璃.系统地研究了Ga2O3从4mol%变化到16mol%时,玻璃的光谱性质与热学性质的变化规律.差热分析表明,随着Ga2O3含量的增加,锗酸盐玻璃的热稳定性增加.运用Judd-Ofelt(J_O)理论计算得到了Tm3+在不同Ga2O3含量的GeO2-Ga2O3-Li2O-BaO-La2O3玻璃中的J-O强度参数(Ω2,Ω4,Ω6)及Tm3+各激发能级的自发跃迁概率、荧光分支比以及辐射寿命等光谱参量.在808nm激光二极管的激发下,测试并分析了Ga2O3对Tm3+荧光光谱特性的影响.随着Ga2O3从4mol%增加到16mol%,Tm3+在1.8μm处的荧光强度呈现先减弱后增强的特性.当Ga2O3含量大约在12mol%时,Tm3+在1.8μm处的荧光强度最弱,受激发射截面达到最小.还初步讨论了Ga2O3对玻璃结构与光谱参数的影响规律. 关键词: 3+掺杂锗酸盐玻璃')" href="#">Tm3+掺杂锗酸盐玻璃 光谱性能 Judd-Ofelt参数 热稳定性  相似文献   

18.
Results of investigations of the spectroscopic properties of manganese-activated single crystals of Sr3Ga2Ge4O14 by the methods of optical and EPR spectroscopy are reported. It is shown that magnagese activator ions form substitutional centers Mn3+ and Mn2+ in 1a-octahedral positions of the Sr3Ga2Ge4O14 lattice. Changes in the opticla properties of Sr3Ga2Ge4O14: Mn after vacuum thermal annealing are attributed to charge transfer of some of the manganese ions (Mn3+→Mn2+). The relationship between the spectroscopical properties of Mn2+ ions and the crystallochemical structure of the system are discussed. I. Franko L’vov State University, 50, Dragomanov St., L’vov, 290005, Ukraine. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 64, No. 6, pp. 779–783, November–December, 1997.  相似文献   

19.
Bi3.95Er0.05Ti3O12 (BErT) thin films were prepared on Pt/Ti/SiO2/Si and indium-tin-oxide (ITO)-coated glass substrates at room temperature by pulsed laser deposition. These thin films were amorphous with uniform thickness. Excellent dielectric characteristics have been confirmed. The amorphous BErT thin films deposited on the Pt/Ti/SiO2/Si and ITO-coated glass substrates exhibited almost the same dielectric constant of 52 with a low dielectric loss of less than 0.02 at 1 kHz. Meanwhile, the dielectric properties of the thin films had an excellent bias voltage stability and thermal stability. The amorphous BErT thin films might have potential applications in microelectronic and optoelectronic devices.  相似文献   

20.
Muslimov  A. E.  Butashin  A. V.  Grigor’ev  Yu. V.  Kanevsky  V. M. 《JETP Letters》2019,109(9):610-614

The morphology and phase composition of the surface of La3Ga5SiO14 (langasite) crystals at annealing in a temperature range 1000–1200°C have been studied using electron and atomic force microscopy. It has been shown that trigonal lanthanum oxide (La2O3) crystals with sizes to 3–4 μm, as well as a microstructure with sizes to 50 μm with gallium excess, with the approximate composition of 15 mol % La2O3, 65 mol % Ga2O3, and 20 mol % SiO2 are formed on the surface of langasite crystals annealed in air at temperatures above 1100°C. Possible reasons for thermal destruction of the compound can be a significant rearrangement of the disordered crystal structure of langasite caused by the interaction with air oxygen and under the intense surface diffusion of atoms of the crystal, as well as the incongruent character of melting of the La3Ga5SiO14 compound. The revealed thermal destruction of the surface of langasite crystals should be taken into account when using this material to fabricate piezoelectric elements for operation at high temperatures.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号