首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We have addressed the dependence of quasi-two-dimensional electron spin dephasing time on the electron gas density in a 17-nm GaAs quantum well using the time-resolved magneto-optical Kerr effect. A superlinear increase in the electron dephasing time with decreasing electron density has been found. The degree of electron spin relaxation anisotropy has been measured and the dependence of spin-orbit splitting on electron gas density has been determined.  相似文献   

2.
Cross-correlation effects arising in methyl protons due to the simultaneous presence of dipole-dipole, chemical shift anisotropy, and Curie spin relaxation mechanisms in paramagnetic systems are analyzed. We assess the potential of obtaining structural constraints from the cross-correlation of Curie spin relaxation with dipolar relaxation mechanisms among methyl proton spins. By theoretical analysis and numerical simulations we characterize the transfer functions describing the interconversion processes of different ranks of multispin order. The time dependence of these processes contains a new type of structural information, the orientation of the methyl C(3)-axis with respect to the electron center. Experimental confirmation is found for selected methyl groups in low spin Fe(3+) sperm whale myoglobin.  相似文献   

3.
4.
量子阱中电子自旋注入及弛豫的飞秒光谱研究   总被引:4,自引:0,他引:4       下载免费PDF全文
采用飞秒脉冲的饱和吸收光谱方法研究了GaAs/AlGaAs多量子阱中电子自旋的注入和 弛豫特性,测得电子自旋极化弛豫时间为80±10ps.说明了电子自旋 轨道耦合相互作用引 起局域磁场的随机化,是导致电子的自旋极化弛豫的主要机理. 关键词: 自旋电子学 半导体量子阱 飞秒激光光谱 自旋 轨道耦合  相似文献   

5.
Y. Zhou  M.W. Wu 《Solid State Communications》2009,149(45-46):2078-2081
A spin relaxation mechanism is proposed based on a second-order spin–flip intersubband spin–orbit coupling together with the spin-conserving scattering. The corresponding spin relaxation time is calculated via the Fermi golden rule. It is shown that this mechanism is important in symmetric GaAs (110) quantum wells with high impurity density. The dependencies of the spin relaxation time on electron density, temperature and well width are studied with the underlying physics analyzed.  相似文献   

6.
The spin dynamics of electrons laterally confined in a wide GaAs quantum well with the use of a special mosaic electrode deposited onto the sample plane has been investigated. Comparative measurements with a semitransparent electrode have been simultaneously carried out to distinguish changes in electron spin dynamics due to the band bending from those due to the lateral confinement controlled by applying an external bias. The electron spin lifetimes in the traps has been found to increase strongly with the applied bias. The measured values of the electron g-factor in the quantum well plane and the magnetic-field dependence of the electron spin lifetimes indicate the emergence of strong three-dimensional confinement in the center of an orifice in the mosaic electrode. The examined electron spin relaxation anisotropy is caused by the anisotropy of the confining potential.  相似文献   

7.
We have studied the electron spin relaxation in semiconductor InAs/GaAs quantum dots by time-resolved optical spectroscopy. The average spin polarization of the electrons in an ensemble of p-doped quantum dots decays down to 1/3 of its initial value with a characteristic time T(Delta) approximately 500 ps, which is attributed to the hyperfine interaction with randomly oriented nuclear spins. We show that this efficient electron spin relaxation mechanism can be suppressed by an external magnetic field as small as 100 mT.  相似文献   

8.
Inelastic spin relaxation and spin splitting epsilon(s) in lateral quantum dots are studied in the regime of strong in-plane magnetic field. Because of both the g-factor energy dependence and spin-orbit coupling, epsilon(s) demonstrates a substantial nonlinear magnetic field dependence similar to that observed by Hanson et al. [Phys. Rev. Lett. 91, 196802 (2003)]. It also varies with the in-plane orientation of the magnetic field due to crystalline anisotropy of the spin-orbit coupling. The spin relaxation rate is also anisotropic, the anisotropy increasing with the field. When the magnetic length is less than the "thickness" of the GaAs dot, the relaxation can be an order of magnitude faster for B ||[100] than for B || [110].  相似文献   

9.
Recently the electron dephasing and energy relaxation due to different magnetic impurities have been extensively investigated experimentally in thin wires, and in this Letter these quantities are theoretically studied. It was shown earlier that a magnetic impurity in a metallic host with strong spin-orbit interaction experiences a surface anisotropy of the form H=K(d)(nS)(2) which causes size effects for impurities with integer spin. Here we show that the dephasing and the energy relaxation are influenced by the surface anisotropy in very different ways for integer spin having a singlet ground state. That must result also in strong size effects and may resolve the puzzle between the concentrations estimated from the two kinds of experiments.  相似文献   

10.
The electron spin dynamics in (111)-oriented GaAs/AlGaAs quantum wells is studied by time-resolved photoluminescence spectroscopy. By applying an external electric field of 50 kV/cm a two-order of magnitude increase of the spin relaxation time can be observed reaching values larger than 30 ns; this is a consequence of the electric field tuning of the spin-orbit conduction band splitting which can almost vanish when the Rashba term compensates exactly the Dresselhaus one. The measurements under a transverse magnetic field demonstrate that the electron spin relaxation time for the three space directions can be tuned simultaneously with the applied electric field.  相似文献   

11.
《Physics letters. A》2014,378(18-19):1336-1340
Intrinsic electron spin relaxation due to the D'yakonov–Perel' mechanism is studied in monolayer Molybdenum Disulphide. An intervalley in-plane spin relaxation channel is revealed due to the opposite effective magnetic fields perpendicular to the monolayer Molybdenum Disulphide plane in the two valleys together with the intervalley electron–phonon scattering. The intervalley electron–phonon scattering is always in the weak scattering limit, which leads to a rapid decrease of the in-plane spin relaxation time with increasing temperature. A decrease of the in-plane spin relaxation time with the increase of the electron density is also shown.  相似文献   

12.
We develop a gauge theory for diffusive and precessional spin dynamics in a two-dimensional electron gas. Our approach reveals a direct connection between the absence of the equilibrium spin current and a strong anisotropy in the spin relaxation: both effects arise if spin-orbit coupling is reduced to a pure gauge SU(2) field. In this case, the spin-orbit coupling can be removed by a gauge transformation in the form of a local SU(2) spin rotation. The resulting spin dynamics is exactly described in terms of two kinetic coefficients: the spin diffusion and electron mobility. After the inverse transformation, full diffusive and precessional spin density dynamics, including the anisotropic spin relaxation, formation of stable spin structures, and spin precession induced by a macroscopic current are restored. Explicit solutions of the spin evolution equations are found for the initially uniform spin density and for stable, nonuniform structures. Our analysis demonstrates a universal relation between the spin relaxation rate and spin-diffusion coefficient.  相似文献   

13.
Covalently linked porphyrin–quinone model systems for photosynthetic electron transfer were examined by using time-resolved electron paramagnetic resonance (TREPR) at intermediate magnetic field and microwave frequency (0.34T/9.5GHz, X-band) and high field and frequency (3.4T/95GHz, W-band). The paramagnetic transients studied were the light-induced spin-correlated radical pair states of the donor–acceptor complex in polar solvents below the melting point and in the soft glass phase of a liquid crystal. It is shown that the systems form strongly exchange-coupled radical pairs, whose TREPR lineshapes are determined mainly by fast electron recombination together with both spin–lattice relaxation and modulation of the exchange interaction. Below the melting point the spin–lattice relaxation rate naturally slows down, but that of the spin on the quinone site is still of the order of 106 s-1. Most probably this is due to contributions from spin–rotation interaction, and dependent on the molecular orientation with respect to the magnetic field. This relaxation anisotropy is related to anisotropic motion of the quinone site in the solvent cage. The results allow conclusions to be drawn concerning the molecular dynamics and flexibility of the systems. To yield long-lived radical pair states that would mimic photosynthetic electron transfer, the two mechanisms described, modulation of exchange and spin–rotation interactions, have to be suppressed by reducing the molecular flexibility of the complex.  相似文献   

14.
Longitudinal relaxation of spin systems (S = 1, 3/2, 3) containing isolated quadrupolar nuclei are studied. The characteristic features of the relaxation behavior are identified in strong magnetic fields in the presence of chemical shift anisotropy. Two mechanisms are established that favor involvement of high rank multipoles in the relaxation process: an autocorrelation mechanism and a cross correlation mechanism. Multipoles of odd rank are involved in the relaxation of nuclei with spin S > 1 as a result of the autocorrelation mechanism (in this case, due to quadrupole interactions). The cross correlation mechanism, due to correlations between the chemical shift anisotropy and the quadrupole interactions, favors the appearance of multipoles of even rank. Expressions are presented for the multipole cross relaxation and longitudinal relaxation rates for spin systems with S = 1, 3/2, 3. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 73, No. 1, pp. 18–25, January–February, 2006.  相似文献   

15.
Anisotropy in the magnetic properties of YbNiAl2 intermetallide has been studied. Electron paramagnetic resonance (EPR) signals assigned to the localized magnetic moments of trivalent ytterbium have been detected at temperatures below 20 K. Spin–lattice relaxation processes like the Orbach–Aminov process with participation of the first excited Stark sublevel of the Yb3+ ion with an energy of 96 K govern electron–spin dynamics and the disappearance of spectrum lines with a further increase in temperature. Strong magnetic anisotropy effects are discussed as a main reason for the appearance of electron paramagnetic resonance.  相似文献   

16.
The muon spin rotation/relaxation/resonance (MuSR) technique for studying matter structures is considered by means of a recently introduced probability representation of quantum spin states. A relation between experimental MuSR histograms and muon spin tomograms is established. The time evolution of muonium, anomalous muonium, and a muonium-like system is studied in the tomographic representation. The entanglement phenomenon of a bipartite muon–electron system is investigated, in view of the tomographic analogs of the Bell number and the positive partial transpose (PPT) criterion. Reconstruction of the muon–electron spin state as well as the total spin tomography of the composed system is discussed.  相似文献   

17.
Comprehensive NMR investigation of low-frequency spin dynamics of LiCu2O2 (LCO) and NaCu2O2 (NCO) low-dimensional helical magnets in the paramagnetic state has been carried out for the first time. Temperature dependences of the spin–lattice relaxation rate and anisotropy on various LCO/NCO nuclei have been determined at various orientations of single crystals in an external magnetic field. The spatial asymmetry of spin fluctuations in LCO multiferroic has been discovered. The quantitative analysis of the anisotropy of spin–lattice relaxation in LCO/NCO has allowed estimating the contributions of individual neighboring Cu2+ ions to the transferred hyperfine field on Li+(Na+) ions.  相似文献   

18.
An ab initio method has been proposed for calculating the spin relaxation time of excited electrons in metals in the framework of the GW method with inclusion of the spin-orbit coupling. The time and length of spin relaxation in Al, Cu, Au, Nb, and Ta have been calculated. The concept of the spin-flip phase space has been introduced. It has been demonstrated that the ratio between the spin relaxation time and the lifetime of the excited electron is well explained within this concept. The time and length of spin relaxation in Nb appear to be considerably shorter than those in Al, Cu, and Au. These quantities in Ta are especially small in accordance with the strong spin-orbit coupling. A comparison of the results with the previous data on the time and length of spin relaxation due to the interaction with impurities and phonons shows that, at an excited electron energy of the order of 1 eV, the inelastic electron-electron scattering in the presence of spin-orbit coupling is a dominant mechanism of spin relaxation.  相似文献   

19.
The coherent spin dynamics of a two-dimensional electron gas in a GaAs/AlGaAs quantum well is experimentally studied near the filling factors ν = 3 and 1. The nonmonotonic character of the dependence of the spin dephasing time of a Goldstone spin exciton on the filling factor is found experimentally. The observed effect can be due to the formation of a new spin relaxation channel, when the main state of the two-dimensional electron system is a spin-textured liquid.  相似文献   

20.
The nuclear spin dynamics in an asymmetrically doped 16-nm AlAs quantum well grown along the [001] direction has been studied experimentally using the time decay of the Overhauser shift of paramagnetic resonance of conduction electrons. The nonzero spin polarization of nuclei causing the initial observed Overhauser shift is due the relaxation of the nonequilibrium spin polarization of electrons into the nuclear subsystem near electron paramagnetic resonance owing to the hyperfine interaction. The measured relaxation time of nuclear spins near the unity filling factor is (530 ± 30) min at the temperature T = 0.5 K. This value exceeds the characteristic spin relaxation times of nuclei in GaAs/AlGaAs heterostructures by more than an order of magnitude. This fact indicates the decrease in the strength of the hyperfine interaction in the AlAs quantum well in comparison with GaAs/AlGaAs heterostructures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号