首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Microperforated panel (MPP) absorbers are promising as a basis for the next-generation of sound absorbing materials. MPPs are typically made of a thin metal or plastic panel. However, thin limp panels are generally not suitable as an interior finish of room walls because they do not have sufficient strength, which prevents practical application of MPPs as an interior finish of room walls. In order to overcome the lack of appropriate strength required for room walls, it is possible to make an MPP out of a thick panel. However, thick MPPs are usually not efficient because the resistance and/or reactance become too high. In this study, trial production of thick MPPs and measurement of their normal absorption coefficients were carried out. Results show that efficient absorption can be given with a thick MPP by using a tapered perforation.  相似文献   

2.
A numerical study of double-leaf microperforated panel absorbers   总被引:1,自引:0,他引:1  
Microperforated panel (MPP) absorbers are promising as a basis for the next-generation of sound absorbing materials. Typically, they are backed by an air-cavity in front of a rigid wall such as a ceiling or another interior surface of a room. Indeed, to be effective, MPP absorbers require the Helmholtz-type resonance formed with the backing cavity. Towards the creation of an efficient sound-absorbing structure with MPPs alone, the acoustical properties of a structure composed of two parallel MPPs with an air-cavity between them and no rigid backing is studied numerically. In this double-leaf MPP (DLMPP) structure, the rear leaf (i.e., the MPP remote from the incident sound) plays the role of the backing wall in the conventional setting and causes resonance-type absorption. Moreover, since a DLMPP can work efficiently as an absorber for sound incidence from both sides, it can be used efficiently as a space absorber, e.g., as a suspended absorber or as a sound absorbing panel. The sound absorption characteristics of the double-leaf MPP are analysed theoretically for a normally incident plane wave. The effects of various control parameters are discussed through a numerical parametric study. The absorption mechanisms and a possible design principle are discussed also. It is predicted that: (1) that a resonance absorption, similar to that in conventional type MPP absorbers, appears at medium-to-high frequencies and (2) that considerable “additional” absorption can be obtained at low frequencies. This low-frequency absorption is similar to that of a double-leaf permeable membrane and can be an advantage compared with the conventional type of MPP arrangement.  相似文献   

3.
Microperforated panels (MPPs) coupled to a rigid wall have been proposed recently as an alternative to porous absorbers in situations having concerns with bacterial contamination and small particles discharge, like food, pharmaceutical and microelectronic industries. There exists also an increasing interest for MPP absorbers in the transportation industry and civil engineering. In general, an optimally designed MPP with good broadband absorption requires many submillimetric holes distributed over a panel of also submillimetric thickness. Such thin plates or foils become so fragile that they need to be protected from mechanical damage. In this paper, an alternative strategy is investigated which allows the design of MPPs with panels of millimetric thickness while maintaining their acoustic performance. These absorbers, named microperforated insertion units (MIUs), avoid the structural problems of the classical MPPs. An assessment of the sound absorption properties of these structures is presented. Comparisons between calculations and measurements are also made under two experimental conditions: plane waves at normal incidence (impedance tube) and free field (anechoic room).  相似文献   

4.
This paper presents an experimental investigation of passively control of sound transmission through a double glazed window by using arrangement of Helmholtz resonators (HRs), which are commonly used for narrow band control application. The laboratory experiments were performed placing the window between reverberation chamber and anechoic chamber. The window was subject to diffuse field, approximate normal wave and oblique wave acoustic excitations. Three sets of HRs were designed and installed in cavity of window. The sound control performances at far-field were measured. The control performances from varying the number of HRs, incident acoustic field, excitation sources (band-limited white noise and traffic noise examples) are presented and discussed in detail. It is shown that a considerable reduction of the transmitted sound pressure levels has been achieved around the mass–air–mass resonance frequency (50–120 Hz). The obtained reductions in the transmitted sound pressure illustrate the potentials of HRs for improving the sound insulation characteristics of double glazed window. The experimental results also indicate that only tuning the HRs to the mass–air–mass resonance frequency does not guarantee the best possible insulation of the sound transmission.  相似文献   

5.
李琪  赵振星  尚大晶  唐锐  卢璐 《声学学报》2023,48(2):383-394
为使用混响法快捷地测量水下结构物的辐射噪声,需基于港口或海岸建造海上混响水池。针对内外都是水情况下的海上混响水池壁面隔声问题,设计了一种带梁空气夹层板水下隔声结构,通过仿真比较了不同参数的空气夹层板的隔声性能。为评价声波无规入射情况下水下大尺寸隔声结构隔声性能,提出了一种混响评价方法,通过隔声实验比较了混响法与脉冲法的不同。结果表明:带梁空气夹层板的水下隔声性能优异,声波无规入射情况下,面板厚度0.015 m、空气层厚度0.020 m的带梁空气夹层板在2~10 kHz频段插入损失大于20 dB;混响法可以有效评价大尺寸水下隔声结构的平均隔声性能,其反映的声波无规入射的平均隔声性能更接近于实际应用情况。  相似文献   

6.
The sound radiation from a double-leaf elastic plate subjected to a point force excitation is investigated theoretically, to gain a fundamental insight into the sound radiation from an interior panel of a double-leaf structure in buildings. The effects of the interior panel on the sound radiation, which show a negative effect at low frequencies due to the mass-air-mass resonance, are discussed in detail. The theory is validated experimentally. As a measure of the efficiency of the interior leaf in reducing noise radiation, the radiation reduction is defined in this study, and it is found useful for predicting the sound radiation due to the structure-borne sound in building elements. Parametric studies through theoretical results are made to clarify the effects of the parameters of the sound radiation system, and to gain a fundamental insight into the control of structure-borne noise radiation. It is shown that it is difficult to reduce the radiated sound power by an interior panel alone, even if its mass is increased.  相似文献   

7.
The sound barrier performance of elastomeric vehicle weather seals was investigated. Experiments were performed on a single bulb seal specimen using a reverberation room method. The seal wall velocity was measured using a laser Doppler vibrometer. The sound pressure near the velocity measurement location was measured simultaneously, which allowed the sound intensity on both sides of the seal and the sound transmission loss to be determined. The vibration response and the sound transmission loss of the bulb seal were then computed using finite element analysis. Acoustic-structure interactions were considered for a partially coherent spatially distributed pressure excitation. The experimental data obtained using the reverberation room method allowed the validation of the numerical models. The resonance frequency due to the mass-air-mass mode of vibration was accurately predicted. The model was then used to numerically investigate the influence of various design parameters. It was found that the elastic modulus significantly affects the bulb seal resonance frequency, and that the loss factor of the material has major effects on the sound transmission loss around resonance.  相似文献   

8.
Because microperforated panels (MPPs) can provide wide-band sound absorption without fibrous and porous materials, they are recognized as next-generation absorption materials. The fundamental absorbing mechanism is Helmholtz-resonance absorption due to the perforations and air-back cavity. Consequently, MPPs are usually placed in front of rigid-back walls. However, one of the authors has proposed MPP space sound absorbers without backing structures. Among these space absorbers, cylindrical MPP space absorbers and rectangular MPP space absorbers are advantageous due to their design flexibility and easy-to-use properties. Although their performances have been investigated experimentally, it is necessary to predict their absorption characteristics to develop improved shapes and efficient designs. Herein their absorption characteristics are numerically predicted using the two-dimensional boundary element method, and the applicability of a numerical method as a design tool to sufficiently predict the performance of MPP space absorbers is discussed.  相似文献   

9.
This paper presents a method to predict the reverberation absorption coefficient of a finite-size membrane absorbers composed of a single- or double-leaf membrane structure of various configurations. In order to predict the sound absorptivity of such an absorber, it is needed to consider that sound is incident from both sides of the absorber, which has not been accounted for the previous studies on membrane absorbers. The edge effect also needs to be considered if the absorber is rather small. The present method is established based on the theory for absorbers hanged in a reverberation chamber developed by Fujiwara and Makita [J Acoust Soc Jpn (E) 1980;1:37-45]. The same theory requires the fraction of energy dissipation in the absorber, which can be obtained by the difference of absorption and transmission coefficients, and the difference is calculated by the theories for various membrane structures presented in the authors’ previous work. An experimental study was also conducted to validate the present method: the predicted values showed good agreement with the measured ones. The numerical examples calculated by the present method are also presented to discuss the effect of the various control parameters, and it is suggested how to improve the sound absorption performance of double-leaf membrane absorbers with a permeable and an impermeable leaves.  相似文献   

10.
李晨曦  胡莹  何立燕 《应用声学》2019,38(6):954-960
为拓宽微穿孔板的吸声频带,该文用有限元算法建立了典型微穿孔板和穿入不同数量金属纤维的微穿孔板模型,研究了两种微穿孔板的吸声系数、声阻抗和微孔内法向质点速度的空间分布,并进行了试验验证。有限元仿真和试验数据表明:穿入金属纤维可以拓宽微穿孔板的吸声频带,吸声系数也随纤维根数的增加而下降;吸声系数仿真结果与试验结果趋势一致,仿真模型可以有效模拟穿入纤维前后微穿孔板的吸声特性;穿入金属纤维导致黏滞效应引起的低质点速度区域增大,声阻增加,引起吸声系数的降低,而声抗变化不大。研究发现,有限元仿真方法适用于结构相对复杂的微穿孔结构的声学建模,能直观地体现微孔复杂结构的影响,值得继续深入研究和工程应用。  相似文献   

11.
As for the sound absorbing system using an MPP (microperforated panel), a double-leaf MPP sound absorber has been studied so far. However, this structure uses two MPPs, which are still expensive, and is disadvantageous when its cost is concerned. Therefore, it is considered that it can be advantageous if one of the leaves can be replaced with a less expensive material keeping high sound absorption performance. In this study, the possibility of producing a useful sound absorbing structure with an MPP and a permeable membrane as an alternative less expensive material is examined. The acoustic properties of this MPP and permeable membrane combination absorber are analysed theoretically with a Helmholtz integral formulation. The absorption performance and mechanism are discussed through the numerical examples. Also, the effect of a honeycomb in the air cavity, which is to be used for reinforcing the structure, is also discussed through a theoretical analysis.  相似文献   

12.
Panel-type sound absorbers are commonly used to absorb low-frequency sounds. Recently, a new type of panel/membrane absorbers has been proposed as a next-generation sound absorber free from environmental problems. On the other hand, it is known that placing a honeycomb structure behind a porous layer can improve sound absorption performance and a similar effect can be obtained for microperforated-panel absorbers. Herein, the sound absorption characteristics of a panel sound absorber with a honeycomb in its back cavity are theoretically analyzed. The numerical results are used to discuss the variations in the sound absorption characteristics due to the honeycomb as well as the mechanism for sound absorption.  相似文献   

13.
This paper presents the results of an evaluation of acoustic comfort of classrooms built according to a standard design. Three constructive designs located in the metropolitan area of Curitiba (Brazil) have been evaluated, two schools built under each of these three designs, in a total of six schools. The acoustic quality of the classrooms have been analyzed based on measurements of the reverberation time, sound pressure level inside and outside the classrooms, and sound insulation. Measurements of ambient noise (external and internal) followed the Brazilian Standards NBR 10151 and NBR 10152. Measurement of reverberation time and sound insulation followed the international Standards ISO 140-4, ISO 140-5, ISO 717-1, and ISO 3382. Results (sound insulation and reverberation time) have been compared with reference values found in the Brazilian Standard NBR 1279, and in the Standards ANSI S12.60 and DIN 18041. Results reveal poor acoustical quality of the surveyed classrooms, for all 3 constructive designs studied. The surveyed designs do not meet the guidelines of either the Brazilian Standards or of the International Standards employed as references.  相似文献   

14.
Super-aligned carbon nanotube (SACNT) arrays are grown on the surface of micro perforated panel (MPP) in the hope of improving the acoustic performance of MPP absorbers by virtue of their unique properties. Scanning electron microscopy reveals that SACNT arrays did not block the perforations of MPPs or changed the perforation diameter due to their “super-aligned” nature, although MPPs are thickened. The absorption effect of SACNT arrays which are of the same and different lengths with different incident side on MPP absorbers are investigated, and standing wave tube method is used to determine the normal sound absorption coefficient. Results show that both of the lengths of SACNT arrays and the incident side have effects on the sound absorption performance of MPP absorbers. And generally SACNT arrays help to improve the sound absorption capacity of MPP absorbers in low-frequency regions only when the SACNT arrays surface is the incident side. SACNT arrays decrease absorption performance of MPP absorbers when the MPP surface is used as the incident side. Moreover, SACNT arrays are found to increase the acoustic ability of MPP absorbers with the same structure parameters monotonically at lengths up to 600 μm in the condition that the SACNT arrays surface is used as the incident side.  相似文献   

15.
Because microperforated panels (MPPs), which can be made from various materials, provide wide-band sound absorption, they are recognized as one of the next-generation absorption materials. Although MPPs are typically placed in front of rigid walls, MPP space sound absorbers without a backing structure, including three-dimensional cylindrical MPP space absorbers (CMSAs) and rectangular MPP space absorbers (RMSAs), are proposed to extend their design flexibility and easy-to-use properties. On the other hand, improving the absorption performance by filling the back cavity of typical MPP absorbers with porous materials has been shown theoretically, and three-dimensional MPP space absorbers should display similar improvements. Herein the effects of porous materials inserted into the cavities of CMSAs and RMSAs are experimentally investigated and a numerical prediction method using the two-dimensional boundary element method is proposed. Consequently, CMSAs and RMSAs with improved absorption performances are illustrated based on the experimental results, and the applicability of the proposed prediction method as a design tool is confirmed by comparing the experimental and numerical results.  相似文献   

16.
Structure-borne sound radiation from a double-leaf structure with a porous absorptive layer in the cavity is studied theoretically as well as experimentally. The study is for establishing a countermeasure to reduce the structure-borne noise radiated from an interior leaf into rooms and for clarifying its reduction effect. The sound field radiated from a double-leaf elastic plate with layers of arbitrary media in the cavity set into vibration by a point force excitation is theoretically analyzed. The effect of the bulk vibration of an absorptive layer is also considered by a simple model into the present theory. Radiation reduction of an inner-layer derived from the theory is experimentally validated. Parametric studies reveal that increasing the ratio of an absorptive layer thickness to the cavity depth is effective to reduce the structure-borne sound radiation but high flow resistivity of the absorbent material is not necessarily required. A practical equation to predict the mass-air-mass resonance frequency for absorbent cavity case is given in a simple form.  相似文献   

17.
Microperforated panels (MPPs) can provide wide-band absorption without fibrous and porous materials and are recognized as next-generation absorption materials. Although the fundamental absorbing mechanism of an MPP absorber is Helmholtz-resonance absorption, sound-induced vibration of an MPP itself can affects the absorption characteristics. There have been some studies considering the effects of the sound-induced vibration and there even is a proposal to widen the absorption bandwidth by positively utilizing the vibration of an MPP itself. On the other hand, in a previous study, the relationship between MPP absorbers and panel-type absorbers was investigated with infinite theory. However, the relationship between Helmholtz-resonance absorption and panel-type absorption in finite flexible MPP absorbers has not been clarified. Herein, from the viewpoint of an absorption-characteristics transition with the perforation ratio, the relationship between Helmholtz-resonance absorption and panel-type absorption including the effects of eigen-mode vibrations of the panel is theoretically and experimentally investigated. The analytical model considers a finite flexible MPP supported in a circular duct, and the predicted data for the absorption coefficient under normal incidence is validated by an experiment using an acoustic tube. From this investigation, it is found that panel-type absorption due to eigen-mode vibrations of the panel occurs independently from Helmholtz-resonance absorption, while panel-type absorption due to a mass-spring resonance of a panel and a back cavity has a trade-off relationship with Helmholtz-resonance absorption with respect to the perforation ratio.  相似文献   

18.
To improve the acoustic treatment of facings and provide appropriate solutions for noise control at workplace, it is necessary to develop methods of acoustic characterization of the walls in industrial halls. Sound absorption coefficient measurement in industrial rooms is however quite a difficult task because of the partially reverberant conditions. This work describes the measurement of the sound absorption coefficient of flat panels subject to small angle sound incidence, in an industrial hall using an experimental device equipped with an acoustic array. The directivity of this array has been optimized so that the major part of the received acoustic energy would come from one portion only of the investigated facing, this, in turn attenuating the reflected beams due to the reverberation. This new device includes an impulse sound source targeting the panels. The present article focuses mainly on the sound source design and implementation. It also describes some sound absorption measurements carried in a semi-anechoic chamber and in an industrial hall in order to examine the performance of the device. Sound absorption coefficients of several standard liners obtained through this device have been compared to those resulted from the two microphone technique.  相似文献   

19.
胡莹  李晨曦  何立燕 《应用声学》2018,37(6):916-926
采用散射矩阵法分析夹层板结构声学特性,并对典型的夹层板结构即飞机壁板进行声学优化,预计飞机壁板隔声特性,获得蒙皮、隔声隔热层、内饰板及它们的组合结构的声学性能。针对尾吊飞机客舱后部噪声过大问题,通过增加铺设隔热隔声层以及部分区域优化安装阻尼层等一系列被动降噪处理方法,对主要传递路径的飞机壁板结构进行优化,降低客舱后部噪声水平,并进行试验验证。试验结果表明:散射矩阵法可快速准确获得夹层结构的隔声性能,并与混响室法测试结果吻合较好;在厚度不变的前提下,改变隔热隔声层的铺设方式和材料密度对壁板隔声性能影响较小,但在蒙皮内侧粘贴阻尼层能在一定频段范围提高壁板隔声性能;将优化的壁板构型应用到飞机后舱段侧壁板,舱内噪声水平可降低约3 dB。  相似文献   

20.
基于水声超材料吸声机理和多层平行介质平面波理论,建立局域共振型水声超材料结构,通过COMSOL进行建模计算,研究该结构的吸声性能机理,此外为了验证钢背衬的隔声性能,在该水声超材料结构基础上添加一层0.005m厚的钢背衬进行仿真对比。研究结果表明,在频段为200Hz-4000Hz时,水声超材料声学性能较好,吸声性能整体较优,且添加钢背衬的水声超材料隔声性能较优,甚至在某频率点达到15dB的隔声差值;此外通过位移场图进一步揭示水声超材料的吸声机理,发现水声超材料结构的位移场和钢背衬都对吸声性能会产生影响,钢背衬通过影响共振吸收来影响吸声性能,而位移场则通过位移幅度大小影响吸声性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号