首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 550 毫秒
1.
Wear-out of Al-Ta2O5/SiO2-Si stacked layers under dynamic current stresses was studied. It was found that a detrapping of negative charges occurs between the pulses, similarly to SiO2 and SiOxNy films. Additional consumption of the SiO2 interfacial layer results in a decrease of the gate voltage in some stages of the stress, depending upon the stress time and current density.  相似文献   

2.
We systematically investigated the role of the top interface for TaCx and HfCx/HfO2 gate stacks on the effective work function (Φm,eff) shift by inserting a SiN layer at the gate/HfO2 top interface or HfO2/SiO2 bottom interface. We found that Φm,eff of the TaN gate electrode on HfO2 was larger than that on SiO2 because of the HfO2/SiO2-bottom-interface dipole. On the other hand, we found that Φm,eff values of the TaCx and HfCx gate electrodes on HfO2 agree with Φm,eff on SiO2. This is because the potential offset of the opposite direction with respect to the bottom interface dipole appears at the metal carbide/HfO2 interface. It is thus concluded that the top interface in the metal carbide/HfO2 gate stacks causes the negative Φm,eff shift.  相似文献   

3.
Plasma-enhanced chemical vapor deposition was used to conformally coat commercial TiO2 nanoparticles to create nanocomposite materials. Hexamethyldisiloxane (HMDSO)/O2 plasmas were used to deposit SiO2 or SiOxCyHz films, depending on the oxidant concentration; and hexylamine (HexAm) plasmas were used to deposit amorphous amine-containing polymeric films on the TiO2 nanoparticles. The composite materials were analyzed using Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). These analyses reveal film composition on the nanoparticles was virtually identical to that deposited on flat substrates and that the films deposit a conformal coating on the nanoparticles. The performance of the nanocomposite materials was evaluated using UV-vis spectroscopy to determine the dispersion characteristics of both SiOx and HexAm coated TiO2 materials. Notably, the coated materials stay suspended longer in distilled water than the uncoated materials for all deposited films.  相似文献   

4.
The electrical stability of flexible indium tin oxide (ITO) films fabricated on stripe SiO2 buffer layer-coated polyethylene terephthalate (PET) substrates by magnetron sputtering was investigated by the bending test. The ITO thin films with stripe SiO2 buffer layer under bending have better electrical stability than those with flat SiO2 buffer layer and without buffer layer. Especially in inward bending text, the ITO thin films with stripe SiO2 buffer layer only have a slight resistance change when the bending radius r is not less than 8 mm, while the resistances of the films with flat SiO2 buffer layer and without buffer layer increase significantly at r = 16 mm with decreasing bending radius. This improvement of electrical stability in bending test is due to the small mismatch factor α in ITO-SiO2, the enhanced interface adhesion and the balance of residual stress. These results indicate that the stripe SiO2 buffer layer is suited to enhance the electrical stability of flexible ITO film under bending.  相似文献   

5.
Multiferroic thin films with the general formula TiO2/BiFe1−xMnxO3 (x=0.00, 0.05, 0.10 and 0.15) (TiO2/BFMO) were synthesized on Au/Ti/SiO2/Si substrates using a chemical solution deposition (CSD) method assisted with magnetron sputtering. X-ray diffraction analysis shows the thin films contained perovskite structures with random orientations. Compared with BFMO films, the leakage current density of the TiO2/BFMO thin films was found to be lower by nearly two orders of magnitude, and the remnant polarizations were increased by nearly ten times. The enhanced ferroelectric properties may be attributed to the lower leakage current caused by the introduction of the TiO2 layer. The J-E characteristics indicated that the main conduction mechanism for the TiO2/BFMO thin film was trap-free Ohmic conduction over a wide range of electric fields (0-500 kV/cm). In addition, ferromagnetism was observed in the Mn doped BFO thin films at room temperature. The origin of ferromagnetism is related to the competition between distortion of structure and decrease of grain size and decreasing net magnetic moment in films due to Mn doping.  相似文献   

6.
The structure of SiOx (x = 1.94) films has been investigated using both X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS). The SiOx films were deposited by vacuum evaporation. XPS spectra show that SiO1.94 films are composed of silicon suboxides and the SiO2 matrix. Silicon clusters appeared only negligibly in the films in the XPS spectra. Si3O+ ion species were found in the TOF-SIMS spectra with strong intensity. These results reveal the structure of the films to be silicon monoxide embedded in SiO2, and this structure most likely exists as a predominant form of Si3O4. The existence of Si-Si structures in the SiO2 matrix will give rise to dense parts in loose glass networks.  相似文献   

7.
The physical and chemical properties of the HfO2/SiO2/Si stack have been analyzed using cross-section HR TEM, XPS, IR-spectroscopy and ellipsometry. HfO2 films were deposited by the MO CVD method using as precursors the tetrakis 2,2,6,6 tetramethyl-3,5 heptanedionate hafnium—Hf(dpm)4 and dicyclopentadienil-hafnium-bis-diethylamide—Сp2Hf(N(C2H5)2)2.The amorphous interface layer (IL) between HfO2 and silicon native oxide has been observed by the HRTEM method. The interface layer comprises hafnium silicate with a smooth varying of chemical composition through the IL thickness. The interface layer formation occurs both during HfO2 synthesis, and at the annealing of the HfO2/SiO2/Si stack. It was concluded from the XPS, and the IR-spectroscopy that the hafnium silicate formation occurs via a solid-state reaction at the HfO2/SiO2 interface, and its chemical structure depends on the thickness of the SiO2 underlayer.  相似文献   

8.
A systematic spectroscopic investigation of PbxLa1−xTi1−x/4O3 (PLT) thin films grown on PbOx/Pt/Ti/SiO2/Si substrate by RF magnetron sputtering was performed by using confocal Raman spectroscopy. Influence of the growth condition modification including different growth temperatures, with various buffer layer thickness, and post-annealing treatments were analyzed with taking advantages of the corresponding Raman spectral band variation in the respective process. Significant change in the spectral bands occurred with the alteration of the growth condition, and the related mechanisms were discussed after spectral deconvolution, providing reliable information about the direction for film growth.  相似文献   

9.
TiO2/SiOx double-layers have been prepared at room temperature by RF magnetron sputtering. The TiO2 top-layer was deposited in an Ar atmosphere, while the SiOx bottom-layer was deposited in an Ar/O2 atmosphere. Samples were characterized using X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, and photoluminescence techniques. The photocatalytic activity of the samples was evaluated by the photodegradation of methylene blue; the results showed that the photocatalytic activity of the TiO2/SiOx double-layers was superior to that of the TiO2 single-layers. The presence of the SiOx bottom-layer improved the photocatalytic activity of the TiO2 layer because it may act as a trap for electrons generated in the TiO2 layer thus preventing electron-hole recombinations.  相似文献   

10.
Al2O3/SiO2 films have been deposited as UV antireflection coatings on 4H-SiC by electron-beam evaporation and characterized by reflection spectrum, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The reflectance of the Al2O3/SiO2 films is 0.33% and 10 times lower than that of a thermally grown SiO2 single layer at 276 nm. The films are amorphous in microstructure and characterize good adhesion to 4H-SiC substrate. XPS results indicate an abrupt interface between evaporated SiO2 and 4H-SiC substrate free of Si-suboxides. These results make the possibility for 4H-SiC based high performance UV optoelectronic devices with Al2O3/SiO2 films as antireflection coatings.  相似文献   

11.
Ba0.6Sr0.4TiO3 thin films were deposited on Pt/SiO2/Si substrate by radio frequency magnetron sputtering. High-resolution transmission electron microscopy (HRTEM) observation shows that there is a transition layer at BST/Pt interface, and the layer is about 7-8 nm thickness. It is found that the transition layer was diminished to about 2-3 nm thickness by reducing the initial RF sputtering power. X-ray photoelectron spectroscopy (XPS) depth profiles show that high Ti atomic concentration results in a thick interfacial transition layer. Moreover, the symmetry ν of ?r-V curve of BST thin film is enhanced from 52.37 to 95.98%. Meanwhile, the tunability, difference of negative and positive remanent polarization (Pr), and that of coercive field (EC) are remarkably improved.  相似文献   

12.
Y.J. Guo  X.T. Zu  B.Y. Wang  X.D. Jiang  X.D. Yuan  H.B. Lv  S.Z. Xu 《Optik》2009,120(18):1012-1015
Two-layer ZrO2/SiO2 and SiO2/ZrO2 films were deposited on K9 glass substrates by sol–gel dip coating method. X-ray photoelectron spectroscopy (XPS) technique was used to investigate the diffusion of ZrO2/SiO2 and SiO2/ZrO2 films. To explain the difference of diffusion between ZrO2/SiO2 and SiO2/ZrO2 films, porous ratio and surface morphology of monolayer SiO2 and ZrO2 films were analyzed by using ellipsometry and atomic force microscopy (AFM). We found that for the ZrO2/SiO2 films there was a diffusion layer with a certain thickness and the atomic concentrations of Si and Zr changed rapidly; for the SiO2/ZrO2 films, the atomic concentrations of Si and Zr changed relatively slowly, and the ZrO2 layer had diffused through the entire SiO2 layer. The difference of diffusion between ZrO2/SiO2 and SiO2/ZrO2 films was influenced by the microstructure of SiO2 and ZrO2.  相似文献   

13.
Sapphire is a desired material for infrared-transmitting windows and domes because of its excellent optical and mechanical properties. However, its thermal shock resistance is limited by loss of compressive strength along the c-axis of the crystal with increasing temperature. In this paper, double layer films of SiO2/Si3N4 were prepared on sapphire (α-Al2O3) by radio frequency magnetron reactive sputtering in order to increase both transmission and high temperature mechanical performance of infrared windows of sapphire. Composition and structure of each layer of the films were analyzed by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), respectively. Surface morphology and roughness of coated and uncoated sapphire have been measured using a talysurf. Flexural strengths of sapphire sample uncoated and coated with SiO2/Si3N4 have been studied by 3-point bending tests at different temperatures. The results show that SiO2/Si3N4 films can improve the surface morphology and reduce the surface roughness of sapphire substrate. In addition, the designed SiO2/Si3N4 films can increase the transmission of sapphire in mid-wave infrared and strengthen sapphire at high temperatures. Results for 3-point bending tests indicated that the SiO2/Si3N4 films increased the flexural strength of c-axis sapphire by a factor of about 1.4 at 800 °C.  相似文献   

14.
A confocal Raman investigation of Pb1 − xLaxTi1 − x/4O3 (PLT) thin films grown by RF magnetron sputtering on PbOx/Pt/Ti/SiO2/Si substrates with an intermediate LaSrCoO3 (LSCO) layer was performed. The influence of the LaSrCoO3 buffer layer was analyzed taking advantage of the observed Raman spectral band variation, which varied according to different manufacturing procedures. In the presence of a LSCO layer, the A1(1TO) Raman mode, which was indicative of tetragonal distortion, was pronouncedly enhanced, and a slight deviation from the (0 0 1) plane of the film was observed from the angular dependence of the polarized Raman spectral intensity. Furthermore, the spectral band variation as well as the residual stress along the in-depth direction was measured in the film from cross-sectional spectral line scans. This latter measurement showed a relaxation of the lattice mismatch in the presence of LSCO and PbO layers.  相似文献   

15.
The CaCu3Ti4O12/SiO2/CaCu3Ti4O12 (CCTO/SiO2/CCTO) multilayered films were prepared on Pt/Ti/SiO2/Si substrates by pulsed laser deposition method. It has been demonstrated that the dielectric loss and the leakage current density were significantly reduced with the increase of the SiO2 layer thickness, accompanied with a decrease of the dielectric constant. The CCTO film with a 20 nm SiO2 layer showed a dielectric loss of 0.065 at 100 kHz and the leakage current density of 6×10−7 A/cm2 at 100 kV/cm, which were much lower than those of the single layer CCTO films. The improvement of the electric properties is ascribed to two reasons: one is the improved crystallinity; the other is the reduced free carriers in the multilayered films.  相似文献   

16.
Ba(ZrxTi1−x)O3 (BZT) (x = 0.20 and 0.30) thin films are deposited on Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrate by sol-gel method. X-ray diffraction patterns show that the thin films have a good crystallinity. Optical properties of the films in the wavelength range of 2.5-12 μm are studied by infrared spectroscopic ellipsometry (IRSE). The optical constants of the BZT thin films are determined by fitting the IRSE data using a classical dispersion formula. As the wavelength increases, the refractive index decreases, while the extinction coefficients increase. The effective static ionic charges are derived, which are smaller than that in a purely ionic material for the BZT thin films.  相似文献   

17.
We report the infrared specular reflectivity of Cox(SiO2)1−x (x∼0.85, 0.55, 0.38) films on SiO2 glass spanning from a metal-like to insulating behavior. While films for x∼0.85 show carrier metallic shielding and hopping conductivity, for x∼0.65 and lower concentrations, the nanoparticles’ number and size promote a localization edge near the highest longitudinal optical frequency. Such an edge is associated with a reflectivity minimum and a higher frequency band connoting strong electron-phonon interactions, carrier phonon assisted hopping, and polaron formation. Optical conductivity fits with current polaron models provide grounds toward a microscopic understanding of transport properties in these as-prepared granular films.  相似文献   

18.
An understanding of the exact structural makeup of dielectric interface is crucial for development of novel gate materials. In this paper a study of the HfO2/Si interface created by the low-temperature deposition ultrathin stoichiometric HfO2 on Si substrates by reactive sputtering is presented. Analysis, quantification and calculation of layer thickness of an HfO2/Hf-Si-Ox/SiO2 gate stack dielectrics have been performed, using X-ray photoelectron spectroscopy (XPS) depth profile method, angle resolved XPS and interface modeling by XPS data processing software. The results obtained were found to be in good agreement with the high frequency capacitance-voltage (C-V) measurements. The results suggest a development of a complex three layer dielectric stack, including hafnium dioxide layer, a narrow interface of hafnium silicate and broad region of oxygen diffusion into silicon wafer. The diffusion of oxygen was found particularly detrimental to the electrical properties of the stack, as this oxygen concentration gradient leads to the formation of suboxides of silicon with a lower permittivity, κ.  相似文献   

19.
Thin Cd2Nb2O7 films were grown on single-crystal p-type SiO2/Si substrates by the metallo-organic decomposition (MOD) technique. The films were investigated by X-ray diffraction, X-ray energy-dispersive spectroscopy, and field emission scanning electron microscopy, and showed a single phase (cubic pyrochlore), a crack-free spherical grain structure, and nanoparticles with a mean size of about 68 nm. A Cauchy model was also used in order to obtain the thickness and index of refraction of the stack layers (transparent layer/SiO2/Si) by spectroscopic ellipsometry (SE). The dielectric constant (K) of the films was calculated to be about 25 from the capacitance-voltage (C-V) measurements.  相似文献   

20.
FTIR and variable angle spectroscopic ellipsometer in conjunction with computer simulation were employed to investigate the electron beam evaporated SiOxNy thin films. FTIR showed a large absorption band located between 600 and 1250 cm−1, which indicates that Si-O and Si-N bands are overlap in SiOxNy films. A three layers model was used to fit the calculated data to the experimental ellipsometric spectra. The main layer was described by Cauchy model while the interface layer and the surface layer were described using Tauc-Lorenz oscillator and Bruggeman effective medium approximation, respectively. The thickness, the refractive index and the extinction coefficient were accurately determined. The refractive index at 630 nm was found to increase from 1.74 to 1.85 with increasing the film thickness from 191.6 to 502.2 nm. The absorption coefficient was calculated from the obtained extinction coefficient values and it has been used to calculate the Tauc and Urbach energies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号