首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Photoluminescence (PL) characteristics have been studied on undoped and Si-doped CuGaSe2 single crystal thin films grown on GaAs (001) substrate by migration-enhanced epitaxy. Room temperature PL spectrum of an undoped layer clearly shows free excitonic emission bands related to the minimum band-edge and to the split-off valence band, but no discernible emission has been observed in the low energy area. At 4.2 K, the excitonic emission due to the split-off valence band disappears. Instead, two additional emissions appear at 1.68 and 1.715 eV which are attributed to the bound exciton and band-to-acceptor transition. The Si doping to CuGaSe2 produces two additional PL bands around 1.61 and 1.64 eV. These PL bands are attributed to the donor acceptor pair emissions due to the doped Si impurity which probably occupies Cu or Ga sites and intrinsic Cu vacancy.  相似文献   

2.
Photoluminescence measurements are used to investigate the nature of the surface layers formed on n+ Si-doped and semi-insulating Cr-doped GaAs substrates after heat-treatment at 780–830°C in H2 or He flow. At 5.5 K the heat-treated n+ substrates exhibit a band near 1.44 eV while the semi-insulating substrates are characterized by a phonon assisted transition with the zero-phonon band at 1.41 eV. Both these bands are identified with donor-acceptor pair recombination. The ionization energy of both the donor and acceptor for the 1.44 eV band is estimated to be ~ 35–40 meV and it is suggested that the acceptor is SiAs. The identities of the donor in the 1.44 eV band as well as that of the centers responsible for the emission at 1.41 eV are unknown.  相似文献   

3.
高瑛  高鸿楷 《光学学报》1995,15(4):68-472
通过对用MOCVD(金属有机物化学气相沉积)方法在Si衬底上生长的GaAs外延薄膜,用不同激发强度下的近红外光致发光研究了液氮温度下峰值能量为1.13eV和1.04eV两个带谱的发光特性,表明这两个带均属于施主-受主对复合发光。由于发光带中存在着电子-声子耦合,所以应在施主-受主对复合发光能量表示式中计及Frank-Condon位移,从而对复合发光能量表示式进行修正。通过对复合发光带能量随激发强度变化的实验曲线和理论表达式的拟合,确定了峰值为1.13eV与1.04eV这两个发光带深施主-受主对的束缚能之和分别为0.300eV和0.401eV。  相似文献   

4.
We present a photoluminescence (PL) study of Ge quantum dots embedded in Si. Two different types of recombination processes related to the Ge quantum dots are observed in temperature-dependent PL measurements. The Ge dot-related luminescence peak near 0.80 eV is ascribed to the spatially indirect recombination in the type-II band lineup, while a high-energy peak near 0.85 eV has its origin in the spatially direct recombination. A transition from the spatially indirect to the spatially direct recombination is observed as the temperature is increased. The PL dependence of the excitation power shows an upshift of the Ge quantum dot emission energy with increasing excitation power density. The blueshift is ascribed to band bending at the type-II Si/Ge interface at high carrier densities. Comparison is made with results derived from measurements on uncapped samples. For these uncapped samples, no energy shifts due to excitation power or temperatures are observed in contrast to the capped samples.  相似文献   

5.
The light-emitting properties of cubic-lattice silicon carbide SiC films grown on Si(100) and Si(111) substrates with VPE at low temperatures (T gr ∼ 700°C) are discussed. Investigations of the grown films reveal a homogeneous nanocrystalline structure involving only the 3C-SiC phase. When the electron subsystem of the structure is excited by a He-Cd laser emitting at λexit = 325 nm, the photoluminescence (PL) spectra contain a rather strong emission band shifted by about 3 eV toward a short-wave spectral region. At low temperatures, the PL integral curve is split into a set of Lorentz components. The relation between these components and the peculiarities of the energy spectrum of electrons in the nanocrystalline grains of the silicon carbide layers is discussed.  相似文献   

6.
掺AlZnO纳米线阵列的光致发光特性研究   总被引:2,自引:0,他引:2       下载免费PDF全文
唐斌  邓宏  税正伟  韦敏  陈金菊  郝昕 《物理学报》2007,56(9):5176-5179
采用化学气相沉积方法,以金做催化剂,在Si (100)衬底上制备了掺AlZnO纳米线阵列.扫描电子显微镜(SEM)表征发现ZnO纳米线的直径在30nm左右.X射线衍射(XRD)图谱上只存在ZnO的(002)衍射峰,说明ZnO纳米线沿c轴择优取向.掺AlZnO纳米线阵列的室温光致发光(PL)谱中出现了3个带边激子发射峰:373nm,375nm,389nm.运用激子理论推算出掺AlZnO纳米线的禁带宽度为3.343eV ,束缚激子结合能为0.156eV;纯ZnO纳米线阵列PL谱中3个带边激子发射 关键词: 光致发光 化学气相沉积(CVD) 激子 ZnO纳米线阵列  相似文献   

7.
We have measured the near band edge photoluminescence of Mn doped liquid phase epitaxially grown GaAs. The photoluminescence spectra at 2°K shows, at low excitation intensities, a structure of up to eight sharp peaks (widths .2 to 1.0 meV) between 1.517 and 1.512 eV, besides the lower energy bands near 1.41 eV due to the deep Mn acceptor level and the usual donor-acceptor bands around 1.47 eV. Attempts to relate the sharp lines to the Mn electronic states, introduced by doping, were unsuccessful. It is our belief that the presence of this particular impurity in our samples allows for whatever states are responsible for the sharp line structure, to reveal themselves in the emission spectrum. A most unespected result is that near band edge sharp line luminescence is observed for impurity concentration as high as 1018cm-3.  相似文献   

8.
The dynamics of electron excitations and luminescence of LiB3O5 (LBO) single crystals was studied using low-temperature luminescence vacuum ultraviolet spectroscopy with a subnanosecond time resolution under photoexcitation with synchrotron radiation. The kinetics of the photoluminescence (PL) decay, the time-resolved PL emission spectra, and the time-resolved PL excitation spectra of LBO were measured at 7 and 290 K, respectively. The PL emission bands peaking at 2.7 eV and 3.3 eV were attributed to the radiative transitions of electronic excitations connected with lattice defects of LBO. The intrinsic PL emission bands at 3.6 and 4.2 eV were associated with the radiative annihilation of two kinds of self-trapped electron excitations in LBO. The processes responsible for the formation of localized electron excitations in LBO were discussed and compared with those taking place in wide-gap oxides.  相似文献   

9.
A new technique, namely low pressure sputtering, has been developed to fabricate Zn nanoparticles, with a subsequent oxidation to synthesize ZnO nanoparticles in the ambient atmosphere at 500$\,^{\circ}$C. The synthesized ZnO nanoparticle has a size of 6--8~nm with a preferred orientation of $c$-axis. The produced ZnO nanoparticles have a good UV photoluminescence (PL) emission energy of 3.349 eV with a significant enhancement of donor--acceptor pair emission located at 3.305 eV which implies a number of donor and acceptor bounded excitons existing in the synthesized ZnO nano particles. The near band edge PL emission of the fabricated ZnO is dominated by the bounded excitons at 10~K.  相似文献   

10.
Temperature dependence of photoluminescence (PL) spectra and time decay ranging from 90 to 330 K are investigated in magnesia-stabilized zirconia single crystals. The emission PL spectra can be decomposed into two bands. The prominent one is centered in the blue-green region of the spectrum whereas the secondary one is centered in the yellow-orange region. The temperature dependence of these bands are analyzed in terms of the so-called configuration coordinate model. The Huang-Rhys parameter for the prominent band is found near 40 and the effective phonon at about 0.030 eV. Thermal quenching energy is determined to be 0.24 eV from the decreasing part of the I(T) curve. Luminescent decays were satisfactorily fitted by two exponentials over the whole temperature range investigated. Total lifetime temperature dependence can be accounted for by assuming a radiative decay from two metastable levels with a separation energy of 0.073 eV. Results are discussed on the basis of the major defects, oxygen vacancies and complex defects.  相似文献   

11.
Luminescent nanocrystalline Si dots were fabricated directly on thermally grown SiO2 at 120°C by conventional RF plasma-enhanced chemical vapor deposition using tetrachlorosilane, SiCl4 and H2. As-deposited Si dot exhibits photoluminescence (PL) in the visible region, consisting of two broad bands corresponding to photon energies of 1.38 and 1.48 eV. Storage in air enhances PL and shifts the PL peak energy to higher wavelengths for dots of diameter less than 10 nm. Fourier transform attenuated total reflection absorption spectroscopy (FTIR-ATR) study reveals that the spontaneous oxidation proceeds until saturation after 70 h at dot sizes of 3–5 nm. The relationship between PL intensity, blueshift of PL peak energy, and surface termination species during oxidation indicates that these changes are attributed to the increased density of radiative centers at the Si nanocrystal dot/SiO2 interface and enhancement of the quantum confinement effect.  相似文献   

12.
各种外延技术已被用来在GaAs衬底上生长GaxIn1-xP外延单晶薄膜(GaInP2/GaAs).很多文献认为,在GaInP2/GaAs生长过程中会被C杂质污染.我们用高灵敏的CAMECAIMS4F型二次离子质谱仪直接测量的结果表明,污染GaInP2/GaAs的微量杂质是Si,而不是C.由GaInP2/GaAs在1.17eV附近的光致发光峰的峰值随激发强度的变化形状表明了它应属于施主-受主对复合发光.进一步分析表明,施主为处在Ga格位上的Si杂质(SiGa),受主为Ga空位(VGa).  相似文献   

13.
Arrays of single‐crystalline Si nanowires (NWs) decorated with arbitrarily shaped Si nanocrystals (NCs) are grown by a metal‐assisted chemical etching process using silver (Ag) as the noble metal catalyst. The metal‐assisted chemical etching‐grown Si NWs exhibit strong photoluminescence (PL) emission in the visible and near infrared region at room temperature. Quantum confinement of carriers in the Si NCs is believed to be primarily responsible for the observed PL emission. Raman spectra of the Si NCs decorated on Si NWs exhibit a red shift and an asymmetric broadening of first‐order Raman peak as well as the other multi‐phonon modes when compared with that of the bulk Si. Quantitative analysis of confinement of phonons in the Si NCs is shown to account for the measured Raman peak shift and asymmetric broadening. To eliminate the laser heating effect on the phonon modes of the Si NWs/NCs, the Raman measurement was performed at extremely low laser power. Both the PL and Raman spectral analysis show a log‐normal distribution for the Si NCs, and our transmission electron microscopy results are fully consistent with the results of PL and Raman analyses. We calculate the size distribution of these Si NCs in terms of mean diameter (D0) and skewness (σ) by correlating the PL spectra and Raman spectra of the as‐grown Si NCs decorated on Si NWs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
We investigated the optical properties and electrical properties of N-doped ZnO layers grown on (0 0 0 1) GaN/Al2O3 substrates by molecular beam epitaxy, employing 10 K photoluminescence (PL) measurements, current–voltage (IV) measurements, capacitance–voltage (CV) measurements, and 100 K photocapacitance (PHCAP) measurements. 10 K PL spectra showed that excitonic emission is dominant in N-doped ZnO layers grown after O-plasma exposure, while overall PL emission intensity is significantly reduced and deep level emission at around 2.0 2.2 eV is dominant in N-doped ZnO layers grown after Zn exposure. IV and CV measurements showed that N-doped ZnO layers grown after Zn exposure have better Schottky diode characteristics than O-plasma exposed samples, and an N-doped ZnO layer grown at 300 °C after Zn exposure has best Schottky diode characteristics. This phenomenon is presumably due to lowered background electron concentration induced by the incorporation of N. PHCAP measurements for the N-doped ZnO layer revealed several midgap trap centers at 1.2 1.8 eV below conduction band minimum.  相似文献   

15.
Photoluminescence (PL) analysis is used to study porous layers elaborated by electrochemical etching of n+ Si-doped GaAs substrate with different etching times. Temperature and power dependence photoluminescence (PL) studies were achieved to characterize the effect of the etching time on the deep levels of the n+ Si-doped GaAs. The energy emission at about 1.46 eV is attributed to the band-to-band (B-B) (e-h) recombination of a hole gas with electrons in the conduction band. The emission band is composed of four deep levels due to the complex of (VAsSiGaVGa), a complex of a (Ga vacancy - donor - As vacancy), a (SiGa-VGa3−) defect or Si clustering, and a (gallium antisite double acceptor-effective mass donor pair complex) and which peaked, respectively, at about (0.94, 1, 1.14, and 1.32 eV). The PL intensity behavior as function of the temperature is investigated, and the experimental results are fitted with a rate equation model with double thermal activation energies.  相似文献   

16.
The results of a study of time-resolved photoluminescence (PL) and energy transfer in both pure and doped with Ce3+ ions SrAlF5 (SAF) single crystals are presented. The time-resolved and steady-state PL spectra in the energy range of 1.5–6.0 eV, the PL excitation spectra and the reflectivity in the energy range of 3.7–21 eV, as well as the PL decay kinetics were measured at 8.8 and 295 K. The lattice defects were revealed in the low temperature PL spectra (emission bands at 2.9 and 4.5 eV) in the undoped SAF crystals. The luminescence spectra of the doped Ce3+:SAF crystals demonstrate a new selective emission bands in the range of 3.7–4.5 eV with the exponential decay kinetics (τ ≈ 60 ns at X-ray excitation). These bands correspond to the d-f transitions in Ce3+ ions, which occupy nonequivalent sites in the crystal lattice.  相似文献   

17.
We have synthesized GaN-core/ZnO-shell nanowires and investigated effects of the ZnO coating. The X-ray diffraction pattern showed that as-synthesized samples are composed of GaN and ZnO. Transmission electron microscopy indicated that the deposited ZnO shell layer is poly-crystalline. The photoluminescence (PL) spectrum of GaN has been changed by the ZnO coating, where emission bands centered at roughly 1.9 eV, 2.5 eV, and 3.3 eV were newly added to the emissions from core GaN nanowires. We found that overall PL intensity has been significantly increased by coating the ZnO shell layers.  相似文献   

18.
Photoluminescence (PL) of high quality GaN epitaxial layer grown on β-Si3N4/Si (1 1 1) substrate using nitridation-annealing-nitridation method by plasma-assisted molecular beam epitaxy (PA-MBE) was investigated in the range of 5-300 K. Crystallinity of GaN epilayers was evaluated by high resolution X-ray diffraction (HRXRD) and surface morphology by Atomic Force Microscopy (AFM) and high resolution scanning electron microscopy (HRSEM). The temperature-dependent photoluminescence spectra showed an anomalous behaviour with an ‘S-like’ shape of free exciton (FX) emission peaks. Distant shallow donor-acceptor pair (DAP) line peak at approximately 3.285 eV was also observed at 5 K, followed by LO replica sidebands separated by 91 meV. The activation energy of the free exciton for GaN epilayers was also evaluated to be ∼27.8±0.7 meV from the temperature-dependent PL studies. Low carrier concentrations were observed ∼4.5±2×1017 cm−3 by measurements and it indicates the silicon nitride layer, which not only acts as a growth buffer layer, but also effectively prevents Si diffusion from the substrate to GaN epilayers. The absence of yellow band emission at around 2.2 eV signifies the high quality of film. The tensile stress in GaN film calculated by the thermal stress model agrees very well with that derived from Raman spectroscopy.  相似文献   

19.
We observed very intense and highly reproducible photoluminescence (PL) spectra for SiOx films obtained by laser ablation of Si targets in 50-mTorr oxygen gas followed by proper annealing. It was found that the PL peak continuously changes from 1.4 eV at the center of the samples to 1.8 eV at the sample edge. The optimum values of the oxygen component in SiOx was x=1.3-1.4 and the optimum annealing temperature was 1000 °C for intense PL. From transmission electron microscopy images of annealed films, Si nanocrystallites are found to be formed in the matrix of SiO2 grown from the SiOx and have diameters of 2-3 nm. These indicate that a high density of Si nanocrystallites with diameters of 2-3 nm in the SiO2 phase are probably responsible for the PL and that the Si nanostructure is well formed from the as-deposited, metastable SiOx (x=1.3-1.4) films by annealing at 1000 °C.  相似文献   

20.
In this paper, the temperature-dependent photoluminescence(PL) properties of Ga N grown on Si(111) substrate are studied. The main emission peaks of Ga N films grown on Si(111) are investigated and compared with those grown on sapphire substrates. The positions of free and bound exciton luminescence peaks, i.e., FX A and D0 X peaks, of Ga N films grown on Si(111) substrates undergo red shifts compared with those grown on sapphire. This is attributed to the fact that the Ga N films grown on sapphire are under the action of compressive stress, while those grown on Si(111) substrate are subjected to tensile stress. Furthermore, the positions of these peaks may be additionally shifted due to different stress conditions in the real sample growth. The emission peaks due to stacking faults are found in Ga N films grown on Si(111) and an S-shaped temperature dependence of PL spectra can be observed, owing to the influence of the quantum well(QW) emission by the localized states near the conduction band gap edge and the temperature-dependent distribution of the photo-generated carriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号