首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
粉末活性炭对模拟对苯二酚废水吸附研究   总被引:1,自引:1,他引:0  
在静态条件下,研究了不同条件下活性炭对对苯二酚废水的吸附效果,确定了处理废水的pH值、活性炭用量、振荡时间、温度、废水中对苯二酚浓度、振荡速率以及电解质对吸附效果的影响。实验表明:活性炭在pH值为6.5,用量3.5g,温度35℃,振荡3.5h的条件下,对100mL质量浓度为100mg/L的对苯二酚模拟废水处理效果最佳。  相似文献   

2.
在静态条件下,研究了活性炭对间氨基苯酚废水的吸附效果,确定了处理废水的pH值、活性炭用量、振荡时间、温度、废水中间氨基苯酚浓度、振荡速率以及电解质对吸附效果的影响。实验表明:活性炭在pH值为6.0,用量3.5g,温度40℃,振荡2.5h的条件下,对100mL质量浓度为50mg/L的间氨基苯酚模拟废水处理效果最佳。  相似文献   

3.
粉末活性炭对模拟间苯二酚废水的吸附   总被引:1,自引:0,他引:1  
姜灵彦  刘蕾  崔节虎  刘刚 《光谱实验室》2011,28(4):1738-1743
在静态条件下,研究了粉末活性炭对间苯二酚废水的吸附效果,通过实验优化了吸附条件,并在最佳处理效果下探究其吸附模式。结果表明,当水样pH值为4,温度30℃,活性炭用量0.3g,振荡时间10m in,振荡速率为120r/m in时,对废水的处理效果最佳。拟合得到活性炭吸附间苯二酚的模式符合F reund lich吸附模式。  相似文献   

4.
以海南椰树壳为原料通过复合物理活化方法制备出2162.84m2/g的高比表面积活性炭,所得活性炭孔径分布范围为1.1-2.5nm.选择对曙红Y染料进行吸附研究,采用分光光度法考查吸附剂用量、pH值、初始浓度、温度与吸附时间对单组分体系染料的吸附量与脱除效果的影响.结果表明在曙红Y浓度1600g ·m-3、pH为2.02、吸附时间10min、温度318K和吸附剂用量0.05g时脱除率可达99.9%.  相似文献   

5.
壳聚糖的吸附行为及其FTIR光谱研究   总被引:12,自引:1,他引:11  
用自制的壳聚糖对几种酸性染料和碱性染料模拟废水进行了吸附行为的研究,考察了吸附时间、壳聚糖脱已酰度及废水pH值对吸附效果的影响。研究表明,在吸附开始的20 min内,壳聚糖对碱性品红和番红花红的吸附已基本达到平衡,且用量只为活性炭用量的2/3的情况下,对染料的吸附效果与活性炭几乎相当;它对酸性大红的吸附过程呈现一级反应动力学特征。文章还采用傅里叶变换红外光谱对壳聚糖吸附染料的机理进行了探讨,研究发现,壳聚糖分子中存在的大量羟基参与了对碱性品红和番红花红的吸附。  相似文献   

6.
常温下,用硫酸铝为改性剂制得改性粉煤灰,以此作为有机磷废水的吸附剂,用分光光度法分析改性粉煤灰对有机磷的吸附性能,并通过XRD对其结构进行表征。结果表明:改性时,盐灰质量比为1∶12;吸附时,改性粉煤灰用量为35g/L、溶液的pH值为8、振荡时间为30min、吸附温度为30℃时,磷的去除率可达97.0%。  相似文献   

7.
利用壳聚糖和膨润土,合成了具有良好吸附效果的天然高分子絮凝吸附材料。用傅里叶变换红外光谱仪表征了原料和产物的结构,通过改变吸附时间、温度、pH值和甲基橙溶液质量浓度等条件,考察了合成材料对甲基橙的吸附性能。结果表明,吸附剂用量为10g/L,温度20℃,溶液pH为4.70,吸附平衡30min后,甲基橙去除率达90%以上,其吸附过程符合Langmuir吸附模型,是放热过程。  相似文献   

8.
研究了碳纳米管作为一种新型吸附剂去除水中亚甲基蓝。考察了溶液pH值、振荡时间、温度等对亚甲基蓝吸附的影响。溶液pH对亚甲基蓝吸附影响较大,动力学数据显示吸附在8h达到平衡。通过对吸附数据拟合,发现在温度为298—338K和浓度为2.5—12.5mg/L的范围内,碳纳米管对亚甲基蓝的吸附等温线均符合弗仑德里希(Feundlich)兰缪儿(Langmuir)吸附等温式。  相似文献   

9.
负载型杂多酸对罗丹明B光催化降解的研究   总被引:1,自引:0,他引:1  
武钏 《光谱实验室》2007,24(4):687-691
以ZrO2-MoO3为载体制备了负载型硅钨杂多酸催化剂.以其为光催化剂,研究其对罗丹明B染料废水光催化降解的影响.实验结果表明:酸度、催化剂用量、溶液初始浓度是影响催化降解效果的重要因素.最佳催化条件为降解溶液酸度pH=2,催化剂最佳用量为0.5g/L,溶液的初始浓度为30mg/L,催化时间为2.5h.  相似文献   

10.
李志洲 《光谱实验室》2010,27(5):1691-1697
采用Fenton试剂对模拟染料废水的降解效果进行研究。结果表明,H2O2投加量、Fe2+投加量、pH值条件、超声处理时间的改变对染料废水的处理效果影响很大。对酸性染料:当pH为4.5,30%H2O2投加的体积分数为30mL/L,Fe2+投加的质量浓度为400mg/L,反应时间为40min时为降解反应的最佳操作条件。对碱性染料,正交试验表明当pH为4、30%H2O2投加的体积分数16mL/L、Fe2+投加的质量浓度为300mg/L、反应时间为60min时为降解反应的最佳操作条件,其降解率达98.46%,COD的去除率达到96.7%。  相似文献   

11.
The decolorization of reactive dye C.I. Reactive Blue 19 from aqueous solution was studied by using ultrasound, activated carbon and combined ultrasound/activated carbon. The combined effects of independent variables, such as ultrasound power, temperature, time, activated carbon concentration, dye concentration and initial pH were investigated on the decolorization by using the central composite design. The decolorization of RB 19 was modelled statistically and optimized by means of the Matlab computer software. The decolorization were accomplished at optimum conditions by using ultrasound, activated carbon and combined ultrasound/activated carbon as 36%, 91% and 99.9%, respectively. The application of ultrasonic irradiation was found to be beneficial for decolorization of RB 19 from aqueous solution by adsorption.  相似文献   

12.
Activated carbon (AC), multiwalled carbon nanotube (MWCNT), and cadmium hydroxide nanowire loaded on activated carbon (Cd(OH)2-NW-AC) have been used for the removal of safranine O (SO) from wastewater. The effects of various parameters including pH, temperature, concentration of the dye, amount of adsorbents, and contact time on the SO adsorption efficiency for all adsorbents has been investigated. Graphical correlation of fitting experimental data to various adsorption isotherm models like those of Langmuir, Freundlich, Tempkin, and Dubinin–Radushkevich for all adsorbents have been calculated. It was found that safranine O adsorption on all adsorbents was endothermic and feasible in nature. Fitting the experimental data to different kinetic models suggests that the adsorption process follows pseudo-second-order kinetics with involvement of the particle diffusion mechanism.  相似文献   

13.
Waste apricot supplied by Malatya apricot plant (Turkey) was activated by using chemical activation method and K2CO3 was chosen for this purpose. Activation temperature was varied over the temperature range of 400-900 °C and N2 atmosphere was used with 10 °C/min heat rate. The maximum surface area (1214 m2/g) and micropore volume (0.355 cm3/g) were obtained at 900 °C, but activated carbon was predominantly microporous at 700 °C. The resulting activated carbons were used for removal of Ni(II) ions from aqueous solution and adsorption properties have been investigated under various conditions such as pH, activation temperature, adsorbent dosage and nickel concentration. Adsorption parameters were determined by using Langmuir model. Optimal condition was determined as; pH 5, 0.7 g/10 ml adsorbent dosage, 10 mg/l Ni(II) concentration and 60 min contact time. The results indicate that the effective uptake of Ni(II) ions was obtained by activating the carbon at 900 °C.  相似文献   

14.
Enteromorpha prolifera was pyrolyzed to prepare activated carbon using chemical activation by zinc chloride. The effect of activation parameters such as activation temperature, weight ratio (Enteromorpha prolifera to ZnCl2), and activation time was investigated. The BET results showed that the surface area and pore volume of activated carbons were achieved as high as 1722 m2/g and 1.11 cm3/g, respectively, in the optimal activation conditions. Batch adsorption studies were carried out to study the adsorption properties of cationic red X-GRL onto activated carbon by varying the parameters like initial solution pH, contact time, and temperature. The kinetic studies showed that the adsorption data followed a pseudo second-order model. The isotherm analysis indicated that the adsorption data could be represented by the Langmuir isotherm model. The Langmuir monolayer adsorption capacity of cationic red X-GRL was estimated as 263.16 mg/g at pH 6.0.  相似文献   

15.
The granular activated carbon/MnFe2O4 composite with a mass ratio of 2:1 was synthesized using a simple chemical coprecipitation procedure and used for the removal of As(III) and As(V) from synthetically prepared wastewater. Physicochemical analysis of the composite was carried out through Brunauer, Emmett and Teller surface area and total pore volume, Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Micrograph and Energy-Dispersive X-Ray Spectroscopy (SEM-EDX). The impact of various adsorption parameters such as the initial pH, adsorbent dose, contact time, temperature and initial arsenic concentration were systematically investigated to evaluate the optimum operating conditions. Nonlinear regression analysis was employed to identify the best-fit isotherm on the basis of three correlation coefficients and three error functions and also to predict the parameters involved in one one-parameter, six two-parameter, nineteen three-parameter, three four-parameter and one five-parameter isotherms. The maximum adsorption capacities estimated using the Langmuir model were 1253 mg/g for As(III) and 1314 mg/g for As(V) at 30 °C temperature and 70 min contact time. The results showed that As(III) and As(V) removal was strongly pH-dependent with an optimum pH value of 7.0 and 4.0, respectively. The mean adsorption energy (E) calculated from the D–R model indicated the nature of adsorption being ion exchange type.  相似文献   

16.
This paper reports the use of a pellet of adsorbent made from water treatment sludge (S) and acid activated water treatment sludge (SH) for removal of fluoride in the batch equilibration technique. The influence of pH, adsorbent dosage, temperature and effect of other ions were employed to find out the feasibility of acid activated adsorbent to remove fluoride to the permissible concentration of 0.7 mg/L. The results from the adsorption isotherm followed both Langmuir and Freundlich models and the highest fluoride removal was found for adsorbent activated with acetic acid at 2.0 mol/L. The optimum adsorbent dosage was found at 40 g/L, 0.01 mol/L acid activated adsorbent which was able to adsorb fluoride from 10 down to 0.11 mg/L. The adsorption capacity was decreased when the temperature increased. This revealed that the adsorption of fluoride on SH was exothermic. In the presence of nitrate and carbonate ions in the aqueous solution, fluoride removal efficiency of SH decreased from 94.4% to 86.6% and 90.8%, respectively. However, there is no significant effect in the presence of sulfate and chloride ions.  相似文献   

17.
柏松  冯亚娥  骆斌 《光谱实验室》2011,28(5):2733-2735
研究了桤木锯末对水中As3+的吸附特性,并探讨了pH、温度、Hg2+对水中As3+吸附率的影响.结果表明,实验条件下锯末对As3+的最佳吸附pH为4.0--6.0,最佳吸附温度为20℃;当Hg2+与As3+同时存在时,增大Hg2+浓度有利于As3+的吸附;桤木锯末对水中As3+的吸附符合拟二级动力学方程.本研究表明,利...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号