首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
祝文秀  金春水  匡尚奇  喻波 《光学学报》2012,32(10):1031002-294
极紫外光刻是实现22nm技术节点的候选技术。极紫外光刻使用的是波长为13.5nm的极紫外光,但在160~240nm波段,极紫外光刻中的激光等离子体光源光谱强度、光刻胶敏感度以及多层膜的反射率均比较高,光刻胶在此波段的曝光会降低光刻系统的光刻质量。从理论和实验两方面验证了在传统Mo/Si多层膜上镀制SiC单层膜可对极紫外光刻中的带外波段进行有效抑制。通过使用X射线衍射仪、椭偏仪以及真空紫外(VUV)分光光度计来确定薄膜厚度、薄膜的光学常数以及多层膜的反射率,设计并制备了[Mo/Si]40SiC多层膜。结果表明,在极紫外波段的反射率减少5%的前提下,带外波段的反射率减少到原来的1/5。  相似文献   

2.
22nm极紫外光刻物镜热和结构变形及其对成像性能影响   总被引:1,自引:0,他引:1  
杨光华  李艳秋 《光学学报》2012,32(3):322005-230
极紫外光刻技术(EUVL)是半导体制造实现22nm及其以下节点的下一代光刻技术。在曝光过程中,EUVL物镜的每一面反射镜吸收35%~40%的入射极紫外(EUV)能量,使反射镜发生热和结构变形,影响投影物镜系统的成像性能。基于数值孔径为0.3,满足22nm技术节点的产业化EUV投影物镜,采用有限元分析(FEA)的方法研究反射镜变形分布,再将变形导入光学设计软件CODE V中,研究反射镜变形其对成像特性的影响。研究结果表明:当达到硅片的EUV能量为321mW,产量为每小时100片时,反射镜最高升温9.77℃,通光孔径内的最大变形为5.89nm;若采用相干因子0.5的部分相干光照明,变形对22nm线宽产生6.956nm的畸变和3.414%的线宽误差。  相似文献   

3.
总结并讨论了极紫外光刻技术中,有关极紫外光学器件受辐照污染的"在线"检测方法。简要介绍了极紫外光刻系统的原理、反射镜膜层结构以及表面污染产生的机理;指出光刻系统中"在线"检测的技术要求;分析了目前几种主要表面检测技术的特点;给出了每种方法在极紫外光学系统中的应用潜力;最后,指出光纤椭偏仪在极紫外光学系统的"在线"表面污染检测中具有良好的应用前景。  相似文献   

4.
总结并讨论了极紫外光刻技术中,有关极紫外光学器件受辐照污染的"在线"检测方法。简要介绍了极紫外光刻系统的原理、反射镜膜层结构以及表面污染产生的机理;指出光刻系统中"在线"检测的技术要求;分析了目前几种主要表面检测技术的特点;给出了每种方法在极紫外光学系统中的应用潜力;最后,指出光纤椭偏仪在极紫外光学系统的"在线"表面污染检测中具有良好的应用前景。  相似文献   

5.
赵永蓬  徐强  李琦  王骐 《强激光与粒子束》2013,25(10):2631-2635
计算了放电等离子体极紫外光刻光源中,不同等离子体长度条件下的收集效率,实验上研究了等离子体长度对Xe气放电极紫外辐射的影响。结合本系统光学收集系统设计参数和理论计算结果,给出了不同等离子体长度条件下中间焦点处13.5 nm(2%带宽)光功率。结果表明等离子体长度为3~6 mm时毛细管光源中间焦点光功率和尺寸最优。  相似文献   

6.
中心波长为13.9nm的正入射Mo/Si多层膜   总被引:1,自引:0,他引:1  
用由铜靶激光等离子体光源等组成的反射率计对自行设计的周期厚度为7.14nm的120层Mo/Si多层膜进行极紫外(EUV)波段反射率测量。由于多层膜层数增加所引起的吸收、膜层界面之间的扩散以及镀膜过程中的膜厚控制误差或表面被氧化(污染)等原因,正入射Mo/Si多层膜在13.9nm处的反射率低于理论计算值73.2%,最后用原子力显微镜(AFM)测量其表面粗糙度为σ=0.401nm。  相似文献   

7.
曾交龙  高城  袁建民 《物理》2007,36(7):537-542
现代技术的飞速发展需要集成电路不断小型化,因而开发下一代光刻光源以满足小型化的要求成为当前的一项紧迫任务。目前工业界确定的下一代光刻光源是波长为13.5nm的极端远紫外(EUV)光源,它能够把光刻技术扩展到32nm以下的特征尺寸,氙和锑材料的等离子体光源被认为是这种光源的最佳候选者。文章在介绍EUV光刻原理和EUV光源基本概念的基础上,讨论了目前研究得最多、技术最成熟的激光产生的和气体放电产生的等离子体EUV光源,对EUV光源的初步应用进行了简单介绍,并着重对氙和锑材料产生的等离子体发射性质和吸收性质的实验与理论研究进展进行了详细介绍与讨论。目前的理论研究进展表明,统计物理模型还不能很好地预测氙和锑等离子体的发射与吸收光谱,因此迫切需要发展细致能级物理模型,以得到更为精确的等离子体光学性质参数,并用于指导实验设计。提高EUV转换效率。  相似文献   

8.
10nm以下光刻技术牵引极紫外(EUV)光刻物镜向超高数值孔径(NA)、组合倍率设计形式发展,物镜系统的入射角和入射角范围因此急剧增大,传统规整膜和横向梯度膜难以满足该类物镜系统反射率及像质要求。为此,提出了横纵梯度膜组合法,用横向梯度膜提高反射率,用纵向梯度膜提高反射率均匀性,并补偿横向梯度膜引入的像差。应用该方法对一套NA为0.50的组合倍率EUV光刻物镜进行膜层设计,设计结果表明,在保证系统成像性能不变的情况下,平均每面反射镜的反射率大于60%,各反射镜的反射峰谷值均小于3.5%,满足光刻要求,验证了横纵梯度膜组合法的可行性。  相似文献   

9.
10nm以下光刻技术牵引极紫外(EUV)光刻物镜向超高数值孔径(NA)、组合倍率设计形式发展,物镜系统的入射角和入射角范围因此急剧增大,传统规整膜和横向梯度膜难以满足该类物镜系统反射率及像质要求。为此,提出了横纵梯度膜组合法,用横向梯度膜提高反射率,用纵向梯度膜提高反射率均匀性,并补偿横向梯度膜引入的像差。应用该方法对一套NA为0.50的组合倍率EUV光刻物镜进行膜层设计,设计结果表明,在保证系统成像性能不变的情况下,平均每面反射镜的反射率大于60%,各反射镜的反射峰谷值均小于3.5%,满足光刻要求,验证了横纵梯度膜组合法的可行性。  相似文献   

10.
研究并讨论了下一代光刻的核心技术之一—激光等离子体极紫外光刻光源。简要介绍了欧美和日本等国极紫外光刻技术的发展概况,分析了新兴的下一代13.5 nm极紫外光刻光源的现状,特别讨论了国内外激光等离子体极紫外光刻光源的现状,指出目前其存在的主要问题是如何提高光源的转化效率和减少光源的碎屑。文中同时概述了6.x nm(6.5~6.7 nm)极紫外光刻光源的最新研究工作。最后,介绍了作者所在研究小组近年来在极紫外光源和极紫外光刻掩模缺陷检测方面开展的研究工作。  相似文献   

11.
空间太阳极紫外(EUV)成像望远镜   总被引:1,自引:0,他引:1  
太阳极紫外和X射线成像观测是空间天气研究的重要内容,空间太阳极紫外(EUV)成像望远镜是为空间天气研究和预报研制的仪器。介绍了国内外太阳极紫外和X射线成像的发展状况,在此基础上引入19.5nm成像观测的科学目标。阐述了望远镜光学系统和成像相机传感器的设计。前者包括光学结构和基本参数、光学窗口的选择、多层膜设计、光学系统仿真结果;后者包括两种不同成像传感器的对比和选择、控制系统的设计。  相似文献   

12.
随着极紫外(EUV)光刻物镜的设计朝着组合倍率物镜系统的方向发展,物镜系统需要同时具有大视场和高数值孔径(NA),因而产生了物镜的光线入射角及入射角范围急剧增大的问题,需要研究适用于组合倍率极紫外光刻物镜系统的膜层设计的新方法。提出了渐进优化膜层的设计方法,该方法提高了镀制膜层的物镜系统的反射率,保证了组合倍率物镜系统的成像质量。利用该方法对NA为0.6的组合倍率物镜系统进行了膜层设计,设计结果表明,含膜极紫外光刻物镜系统的平均反射率大于65%,各反射镜的反射率峰谷值均小于3.35%,反射率均匀性良好。  相似文献   

13.
极紫外(EUV)投影光刻掩模在斜入射光照明条件下,掩模成像图形位置和成像图形特征尺寸(CD)都将随入射光方向变化,即存在掩模阴影效应。基于一个EUV掩模衍射简化模型实现了掩模阴影效应的理论分析和补偿,得到了掩模(物方)最佳焦面位置和掩模图形尺寸校正量的计算公式。掩模(物方)焦面位置位于多层膜等效面上减小了图形位置偏移;基于理论公式对掩模图形尺寸进行校正,以目标CD为22 nm的线条图形为例,入射光方向变化时成像图形尺寸偏差小于0.3 nm,但当目标CD继续减小时理论公式误差增大,需进一步考虑掩模斜入射时整个成像光瞳内的能量损失和补偿。  相似文献   

14.
电离层极紫外波段(10~100 nm)日辉辐射主要是由太阳光电离激发以及光电子碰撞电离激发过程产生的,利用天基遥感探测手段对极紫外日辉辐射进行观测,可以获得白天电离层F层的电子密度、离子密度及空间分布等信息。极紫外波段日辉的天基遥感探测技术在国外起步较早,尤其是欧美、日本等国家,目前已经处于相对成熟的阶段。而我国对极紫外波段气辉辐射的研究几乎为空白,对电离层的探测也主要集中在夜间,如2017年我国发射的风云三号气象卫星D星上装载的电离层光度计可以获得夜间电离层峰值电子密度。对极紫外气辉进行遥感观测,特别是对电离层中O~+ 83.4 nm日气辉辐射的辐射特性进行探测,是获得白天电离层辐射特性的重要手段,也是国际上电离层光学遥感探测技术的研究热点。首先介绍了极紫外日辉的辐射传输理论,对日辉辐射的激发过程、碰撞过程以及共振散射过程进行了介绍,在此基础上重点分析了O~+ 83.4 nm日气辉辐射的产生机制及辐射特性。该辐射是太阳光电离激发低热层中的O原子而产生,为电离层极紫外气辉中辐射强度较强的信号之一, 83.4 nm气辉的高度分布情况可以提供电离层O~+密度扩线以及电子密度扩线,为白天电离层探测提供了一种有效手段。其次分析了O~+ 83.4 nm日辉辐射的谱带特性,以MSIS-00大气模型为基础,利用由美国计算物理公司与空军实验室联合开发的AURIC v1.2模型计算83.4 nm气辉辐射的初始体发射率、共振散射作用下的体发射率和临边柱辐射强度的分布情况,探究O~+83.4 nm日辉谱线与高度、纬度、太阳活动和地磁活动等电离层物理参量的相关性。基于极紫外日辉辐射算法,同时根据氧离子83.4 nm辐射传输特性,考虑该辐射的多次散射效应,提出了氧离子83.4 nm日辉辐射的计算方法。假设电离层呈现电中性,获得氧离子83.4 nm日辉强度可以反演白天电离层O~+密度,进而获得白天电离层F层电子密度的分布情况,为探究白天电离层特性提供了重要依据。  相似文献   

15.
极紫外光刻曝光光学系统是极紫外光刻机的核心部件,其设计直接影响极紫外光刻机的性能。极紫外光刻机曝光系统的设计难度大、研究周期长,国外极紫外光刻机产品已经用于高端芯片的制造,但国外对中国禁运相关产品。国内极紫外光刻机曝光系统的设计和研发始于2002年。国内相关领域的研究主要聚焦在极紫外光刻机曝光光学系统的光学设计、像差检测、公差分析、热变形分析等。结合国内外极紫外光刻机曝光光学系统设计研究的历史和现状,较为系统地综述了极紫外光刻投影物镜和照明系统的设计研究与进展,包括:极紫外光刻机投影物镜系统及其设计方法、极紫外光刻照明系统及其设计方法、极紫外光刻曝光光学系统的公差分析、热变形及其对成像性能的影响研究,这为我国从事极紫外光刻机研制、曝光系统光学设计与加工的学者、工程师等提供了极紫外光刻机曝光系统设计研究的历史、现状和未来趋势的相关信息,助力我国极紫外光刻机的设计和研制。  相似文献   

16.
太阳极紫外成像光谱仪光学系统设计   总被引:1,自引:0,他引:1  
在极紫外波段对太阳进行超光谱成像观测是研究太阳上层大气,日冕中等离子物理特性的重要手段。依据太阳极紫外成像光谱仪的应用,结合国内外极紫外成像光谱仪发展现状,制定了太阳极紫外成像光谱仪的性能指标。通过比较各种光学结构的优缺点,选择望远镜与光谱仪组合的结构。讨论并选择了可用的基本元器件,望远系统采用离轴抛物面反射镜,分光器件为高密度超环面等间距光栅。设计出符合指标的光学系统。最后给出了太阳极紫外成像光谱仪的设计过程、详细参数与结果。光学系统的工作波段为17.0~21.0nm,视场是1 228″×1 024″,空间分辨率达到0.8arcsec.pixel-1,光谱分辨率约为0.001 98nm.pixel-1,系统总长度约为2.8m。  相似文献   

17.
极紫外多层膜技术研究进展   总被引:2,自引:0,他引:2  
张立超 《中国光学》2010,3(6):554-565
在极紫外波段,任何材料都表现出极强的吸收特性,因此,采用多层膜实现高反射率是构建正入射式光学系统的唯一途径。本文总结了极紫外多层膜的发展进程,叙述了制备极紫外多层膜的关键技术(磁控溅射、电子束蒸发、离子束溅射)以及它们涉及的相关设备。由于多层膜反射式光学元件主要应用于极紫外光刻与极紫外天文观测,文中重点讨论了极紫外光刻系统对多层膜性能的要求,镀膜过程中的面形精度和热稳定性等问题;同时介绍了极紫外天文观测中使用的多层膜的特点,特别讨论了多层膜光栅的制备技术和亟待解决的问题。  相似文献   

18.
高数值孔径(NA)、大视场极紫外光刻物镜光学系统是实现22 nm及以下技术节点产业化光刻系统的关键部件。通过对光刻物镜系统结构的分析,利用可视化对其初始结构进行分组构造。并在此基础上采用一种渐近式NA方法获得了弦长为26 mm,宽2 mm的弧形视场内复合波像差优于均方根(RMS)为λ/50的物镜系统。借助Q型多项式,使物镜光学元件非球面度低于45μm,最大口径小于400 mm,全视场波像差优于0.027λRMS,畸变优于1.5 nm。  相似文献   

19.
随着大规模集成电路芯片制造的技术节点不断缩小,光刻机的聚焦控制变得尤为困难。为了保证硅片曝光的质量,需要快速、准确地将硅片在几十纳米的聚焦深度范围(DOF)内进行快速调整。因此,需要仔细分析光刻过程中导致焦点偏移或工艺窗口变化的各种因素,制定合理的聚焦控制预算,将各种误差因素控制在一定范围内。本文聚焦极紫外(EUV)光刻,综述包含EUV在内的先进光刻机中光路部分对聚焦控制有影响的各种因素,总结它们产生的原理及仿真、实验结果,为开展先进光刻聚焦控制预算研究提供参考。  相似文献   

20.
EUV波段电光成像系统分辨率的实验研究   总被引:1,自引:1,他引:0  
基于微通道板 (MicrochannelPlate ,MCP)探测器件设计一套成像系统 ,用于对极紫外 (ExtremeUl traviolet,EUV)波段的光进行成像。结果在 13,17 1,19 5和 30 4nm处获得了一个宽度为 3mm的狭缝的像 ,其相应的空间分辨率分别为 85 ,12 0 ,182和 4 95 μm ,最佳为 85 μm ,对应波长 13nm ,而且波长越短 ,分辨率越高 ,图像的亮度也越高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号