首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 328 毫秒
1.
通过解析分析和数值模拟,比较了钛K线(4.5 keV)与铜K线(8.0 keV)等X射线源背光透视物体情况下,菲涅耳波带板直接成像与投影式相衬成像对被透视物体的空间分辨能力。结果表明,波带板成像可实现优于1 m的高空间分辨能力,而且使用较大尺度背光源更有利于成像。对于高透射或弱吸收的透视物体,波带板难以成像,可采用投影式相衬成像实现m级空间分辨。计入了以前文献没有考虑到的更高阶影响后,解析给出了点光源照射下相衬像的强度分布与对比度。模拟了微焦点X射线源照射存在厚度起伏的薄膜靶以及密度空间调制靶的相衬成像,点光源情况下模拟结果和解析结果相符。讨论了光源大小、成像距离等参数对相衬成像对比度和空间分辨能力的影响,结果表明,通过减小光源尺度和调节物体到探测面的距离,空间分辨能力可优化到1~4 m。  相似文献   

2.
陆中伟  王晓方 《物理学报》2019,68(3):35202-035202
X射线菲涅耳波带板成像能实现亚微米空间分辨能力,有可能应用于激光等离子体或聚变靶的高分辨X射线成像诊断.之前的数值模拟研究表明,成像分辨能力受光源尺寸、入射光或成像光谱带宽的影响.本文报道在632.8 nm为中心波长的可见光波段,对波带板成像的数值模拟和原理性验证实验.数值模拟表明:随着扩展光源尺寸增加,视场中央分辨能力基本不变,而像对比度下降;随着成像的光谱带宽的增加,视场中央分辨能力与像对比度同时下降.实验证实了数值模拟的结论,且实验与数值模拟结果的定量比较也符合得较好.  相似文献   

3.
刘鑫  郭金川 《光子学报》2011,40(2):242-246
通过对用于微分相衬成像吸收光栅效率及光源空间相干性分析,提出一种新型阵列光源替代现有普通光源加吸收光栅模式.根据相位光栅自成像强度分布及吸收光栅效率对干涉成像对比度的影响分析,吸收光栅厚度一般应大于100 μm,而目前微加工工艺难以完成所要求的吸收光栅结构.结合光源亮度及成像对比度分析,给出阵列优化结构,并制作该光源,...  相似文献   

4.
刘鑫  郭金川 《光子学报》2014,40(2):242-246
通过对用于微分相衬成像吸收光栅效率及光源空间相干性分析,提出一种新型阵列光源替代现有普通光源加吸收光栅模式.根据相位光栅自成像强度分布及吸收光栅效率对干涉成像对比度的影响分析,吸收光栅厚度一般应大于100 μm,而目前微加工工艺难以完成所要求的吸收光栅结构.结合光源亮度及成像对比度分析,给出阵列优化结构,并制作该光源,相关测试验证其可行性.  相似文献   

5.
菲涅耳波带板直接成像,应用到激光等离子体或惯性约束聚变靶的X射线成像诊断,可实现μm甚至亚μm的空间分辨能力。在对成像进行数值模拟时,考虑到光源的光谱带宽和几何尺度对成像的影响,要进行菲涅耳-基尔霍夫衍射积分与卷积等数值计算,需占用大量计算机内存并且耗费运行机时。改进了数值计算方法,采用了蒙特卡罗积分法和新的卷积算法。模拟了菲涅耳波带板对大尺度多色X射线源的二维成像,新算法与以往算法相比,可显著减少运算机时,在台式机上实现模拟成像的快速计算。结果表明随着光源尺度增大、光谱带宽增加,像的背景增强,导致反衬度与成像质量下降。  相似文献   

6.
菲涅耳波带板应用于聚变靶的高分辨X射线成像分析   总被引:1,自引:0,他引:1       下载免费PDF全文
王晓方  王晶宇 《物理学报》2011,60(2):25212-025212
在惯性约束核聚变研究中,为了实现1μm高空间分辨keV-X射线成像,文中发展了菲涅耳波带板(FZP)直接成像的分析方法,并通过数值计算研究了FZP的成像特性.针对钛Kα线(光子能量4.51 keV,波长0.275 nm),提出了FZP参数,对制作技术的要求较低.研究了靶尺度的影响.FZP的有效视场使它能够对数毫米大尺度靶实现高分辨成像.还研究了入射光的光谱带宽对成像的影响.FZP的色差有助于单色成像,但是带宽超过限度会导致像的反衬度降低.这些结果表明FZP应用于聚变点火靶的高空间分辨X射线成像的能力,也为应用提出了要求. 关键词: X射线成像 惯性约束核聚变 菲涅耳波带板  相似文献   

7.
随着高性能第三代同步辐射光源的建成开放,基于X射线相干特性的实验方法得到了快速发展和广泛应用.作为一个典型的例子,X射线相位衬度成像已经成为常规的X射线实验方法并向用户开放.相干散射、相干衍射成像、光子关联谱等X射线实验方法正日益受到重视,在高空间分辨、时间分辨等研究领域已显示出其独特的优越性.因此,研究和测量第三代同步辐射的空间相干特性对进一步发展这些新的实验方法具有重要意义.基于Talbot自成像原理成功测量了上海光源X射线成像线站发射的X射线的空间相干长度,并进而测得了相应光源的空间尺度.光子能量为33.2 keV时,测得的X射线光束垂直方向空间相干长度为8.84μm,对应的光源尺寸为23μm,测量结果与理论分析相符.  相似文献   

8.
基于离轴无透镜傅里叶变换数字全息的原理,分析了影响离轴无透镜傅里叶变换数字全息分辨率的两个重要因素,一是物的大小和记录距离,二是参考点光源的大小.指出在满足三像分离与采样定理的条件下,恰当选择成像区域、记录距离和参考点光源尺度,可提高成像分辨率.在此基础上分别使用线度为2μm、6.5μm和15μm的参考点光源,对USAF1951分辨率板中心的1.0×1.0mm2和1.5×1.5mm2的成像区域,在不同记录距离进行了相应的实验,获得了与理论分析相符的结果,证明了理论分析的正确性.  相似文献   

9.
透射质子的能损和散射角是质子照相成像模糊的主要来源。基于Zumbro聚焦成像磁透镜的质子照相技术,可基本消除散射角引起的成像模糊,实现几十μm的空间分辨,但无法对能损信息进行优化是其空间分辨能力难以进一步提升的主要原因。为利用透射质子的能损信息,进一步提高质子照相的空间分辨能力,提出了一种新型的成像磁透镜,称之为能损型聚焦成像磁透镜。基于11 MeV低能能损型质子照相的实验束线和Geant4模拟软件,建立全过程照相模型,研究11 MeV能损型成像束线的空间分辨能力。模拟研究表明:对于10 μm厚的Al箔,考虑点扩散函数等测量系统成像模糊的影响,11 MeV能损型成像束线可实现约30 μm的空间分辨。与等大型Zumbro磁透镜相比,空间分辨能力得到显著提升。  相似文献   

10.
对单丝直径为20μm,12×9阵列方形面阵的Ge-As-Te-Se组分光纤束进行了测试,并开展红外成像研究。利用5~11μm连续可调谐红外量子级联激光器作为光源,对光纤束损耗进行检测,传输损耗平均为1 dB/cm。设计并加工了基于像方远心成像的紧凑型物镜,总长13.6 mm,直径6 mm,最终实现了2 mm×2 mm视场内100μm分辨率传像。分别在量子级联激光器和非相干黑体光源的照明下,进行了环境温度对成像对比度影响的研究,结果表明,在环境温度较高(>40℃)的条件下,基于量子级联激光器照明可实现高对比度内窥成像。本文对于深入开展红外生物效应研究具有指导意义和实用价值。  相似文献   

11.
 X射线源的焦斑尺寸是反映杆箍缩二极管射线源成像性能的重要参数。利用针孔成像法对MeV级脉冲X射线源的焦斑进行了2维图像测量。厚针孔采用直孔段加单锥体结构,直孔段孔径为0.2 mm。对于0.5 MeV的X射线,5倍成像倍率下调制传递函数值为0.5时空间分辨达到2.0 lp·mm-1。图像采集系统由闪烁体、物镜和CCD相机组成,物镜的成像倍率约0.34。实验结果经过模糊校正后,得到了焦斑的图像和调制传递函数。根据调制传递函数值为0.5时对应的空间频率值,给出X射线源焦斑的尺寸。阳极杆直径为1.2 mm时,X射线源焦斑的高斯分布等效直径为0.86 mm。  相似文献   

12.
微焦点源X射线相衬成像技术   总被引:1,自引:1,他引:1       下载免费PDF全文
 相衬成像方法利用硬X射线对低密度弱吸收物质成像,可获得高衬度图像。用菲涅尔衍射理论分析了X射线图像的形成机理。在频域中根据光学传递函数,对物像距离、样品空间频率等对图像相位衬度的影响进行了分析。分辨率和衬度是决定图像可见度的两个依据,分辨率主要依赖于光源的空间相干性,空间相干性又决定于源点尺寸,而时间相干性(单色性)是一个不重要的影响因子。利用多色微焦点源实现了X射线相衬成像技术,获得了有价值的相衬图像,如低原子序数低密度泡沫材料的硬X射线相衬图像,与吸收衬度成像相比,其图像质量得到了很大提高,能观察到泡沫材料的细微结构,分辨率可达μm量级。  相似文献   

13.
何泽  黄宁  王鹏  陈子晗  彭博 《强激光与粒子束》2021,33(11):116001-1-116001-9
为解决全场X射线荧光(XRF)成像中针孔形状和尺寸的选取问题,采用Geant4软件,模拟了6种不同类型针孔和4种不同的针孔孔径,分析了这些参数对点扩散函数和调制传递函数的影响;模拟了不同能量X射线荧光平面源的成像过程,并用均值滤波和Richardson迭代法对图像进行处理,分析了图像处理的效果。模拟结果表明:对于能量小于20 keV的荧光X射线,双锥孔结合直孔模型的点扩散函数尖锐性和等晕性更好,调制传递函数的截止频率更大,空间分辨更好,更适合做全场XRF成像的针孔;均值滤波结合Richardson迭代法的图像处理算法对全场XRF图像处理的效果较好。  相似文献   

14.
In traditional X-ray radiography, which has been used for various purposes since the discovery of X-ray radiation, the shadow image of an object under study is constructed based on the difference in the absorption of the X-ray radiation by different parts of the object. The main method that ensures a high spatial resolution is the method of point projection X-ray radiography, i.e., radiography from a point and bright radiation source. For projection radiography, the small size of the source is the most important characteristic of the source, which mainly determines the spatial resolution of the method. In this work, as a point source of soft X-ray radiation for radiography with a high spatial and temporal resolution, radiation from a hot spot of X-pinches is used. The size of the radiation source in different setups and configurations can be different. For four different high-current generators, we have calculated the sizes of sources of soft X-ray radiation from X-ray patterns of corresponding objects using Fresnel-Kirchhoff integrals. Our calculations show that the size of the source is in the range 0.7–2.8 μm. The method of the determination of the size of a radiation source from calculations of Fresnel-Kirchhoff integrals makes it possible to determine the size with an accuracy that exceeds the diffraction limit, which frequently restricts the resolution of standard methods.  相似文献   

15.
基于激光驱动等离子体X光源的X射线相衬成像   总被引:2,自引:2,他引:0  
为了诊断惯性约束聚变(ICF)内爆靶丸球壳的多层信息,在神光Ⅱ激光器上对激光驱动等离子体X光源的相衬成像进行了研究。利用神光Ⅱ第9路激光驱动平面Ti靶获得X光源,在10μm的针孔约束下作为次级点光源对样品成像,用X光胶片记录。成功地将相衬成像技术应用于ICF实验,综合考虑成像放大倍数、分辨力、成像衬度和抑制烧蚀碎片等因素,选择合适的实验条件,成功获得了清晰的双层内爆靶丸球壳结构,空间分辨力优于10μm。  相似文献   

16.
为了提高激光惯性约束聚变实验二维成像诊断的精密化程度, 提出了分幅变像管动态空间分辨率的标定方法. 标定原理是以直边函数为物, 经光学系统成像后求解系统的调制传递函数, 从而获得系统的空间分辨率. 在神光Ⅱ装置上利用八路激光打靶产生1-3.5 keV能区的连续X 射线标定源, 照射高Z刀边材料, 并成像到分幅变像管阴极上, 分幅变像管采用脉冲选通工作模式获得动态像. 对分幅变像管采集的动态图像进行处理得到系统的调制传递函数. 根据调制传递函数为0.1时对应的空间截止频率, 得到系统的空间分辨率为20 lp/mm. 根据分幅变像管的动态空间分辨理论, 计算系统的极限空间分辨率为22.8 lp/mm. 标定结果略低于极限空间分辨率, 与理论基本吻合. 根据传统标定方法得到该分幅变像管的静态空间分辨率为22 lp/mm, 比动态空间分辨率略高. 在二维成像诊断时, 分幅变像管工作于动态选通模式, 故动态空间分辨率的标定结果更能真实地反映其成像诊断能力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号