首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
基于高光谱图像和判别分析的草地早熟禾品种识别研究   总被引:1,自引:0,他引:1  
利用高光谱成像技术(550~1 000nm),采集了6个草地早熟禾品种新鲜叶片的高光谱图像,提取了叶片的光谱信息,运用Wilks’Lambda逐步判别分析法,从94个波段中选择了9个特征波段,根据特征波段的光谱信息,采用Fisher线性判别法,构建草地早熟禾品种的判别分析模型。结果表明,选择3个、6个和9个波段组合,对120个训练样本的识别正确率分别为98.3%,100%和100%,对60个测试样本的识别正确率分别为83.3%,96.7%和100%,说明以9个特征波段的光谱信息构建的草地早熟禾品种判别模型是合适的,利用高光谱成像技术结合判别分析法,为快速识别草地早熟禾品种提供了一种新的方法。  相似文献   

2.
农作物生长发育过程中经常会遭到病虫害等外界因素侵染,如果不能实施有效的监测诊断和科学的防治,极易引起农药喷洒不当或过量,不仅会影响作物的产量和种植户的经济效益,还会造成严重的环境污染。近年在广西大棚厚皮甜瓜上发生了一种严重的由瓜类尾孢(Cercospora citrullina)引起的甜瓜叶斑病,导致甜瓜减产和种植户的经济损失。故此应用高光谱成像开展甜瓜叶片的尾孢叶斑病检测,获取健康甜瓜叶片和受瓜类尾孢感染的具有不同病变程度的甜瓜叶片在380~1 000和900~1 700 nm的高光谱图像,选取感兴趣区域并获取相应的平均光谱反射率,比较发现健康叶片和不同病变程度叶片染病区域的平均反射率差异显著。在540 nm处附近,健康叶片和病变程度轻微的叶片的光谱具备波峰形态,随着病变程度增加,波峰逐渐消失;在700~750 nm处附近,叶片反射率曲线急剧上升,出现绿色植物光谱曲线显著的“红边效应”特征;750~900 nm范围,健康叶片与轻微病变区域的光谱反射率变化趋于平稳,而其他病变区域的反射率呈上升趋势,且健康叶片的反射率高于病变区域,反射率随病变程度增加而下降,这一变化规律一直持续到近红外波段的900~1 350 nm范围。运用主成分分析、最小噪声分离法观察叶片早期病变的特征,经主成分分析和最小噪声分离法处理后,特别是对于早期病变,样本受感染后发病的区域更为明显。基于高光谱图像提取的前三个主成分得分绘制三维散点图,虽然不同病变程度的部分样本有重叠,但病变样本与健康样本的分布区分明显。应用K-近邻法和支持向量机方法建立叶片病变判别模型,结果显示:KNN模型对健康样本测试集判别率为98.7%,病变样本的判别率随病变程度加重而逐渐升高;对病变程度较轻样本,支持向量机模型相比于KNN模型而言,判别正确率更高、分类效果更好;总体上,高光谱图像对健康样本的判别率较高(>97%),可用于健康样本与病变样本的识别,但对不同病变程度的区分效果欠佳。研究结果表明,高光谱成像可用于甜瓜尾孢叶斑病的检测,对不同病变程度的区分效果仍有待提高。  相似文献   

3.
基于高光谱成像和判别分析的黄瓜病害识别   总被引:3,自引:0,他引:3  
利用光谱成像技术(400~720 nm)识别黄瓜白粉病、角斑病、霜霉病、褐斑病和无病区域。构建高光谱图像采集系统进行样本图像的采集,预处理和光谱信息的提取。由于获得的原始光谱数据量很大,为了减少后续运算量,提高准确率,采用逐步判别分析和典型判别分析两种方法进行降维。逐步判别从55个波段中选择12个波段,典型判别从55个波段中提取2个典型变量。利用选择的光谱特征参数建立病害识别模型。逐步判别构建的模型对训练样本和测试样本的判别准确率分别为100%和94%,典型判别构建的模型对训练样本和测试样本的判别准确率均为100%。说明利用高光谱成像技术可以进行黄瓜病害的快速、准确识别,并为实现可见光谱范围内黄瓜病害的田间实时在线检测提供了可能。  相似文献   

4.
高光谱成像因光谱分辨率高、图谱合一、可实现快速无损检测等特点现已广泛应用于农业、医学、遥感等领域。现有的对可回收生活垃圾检测与分类的方法,都存在检测时间长,分类效率低,而大量多种垃圾无法同时快速分拣等问题。考虑到不同类别的生活垃圾由于其主要组成分子结构的差异,对不同波长的光有不同的吸收特性。高光谱图像在记录待分类垃圾的空间信息的同时,可以获得垃圾对不同波长的光的反射率光谱信息,通过建立识别分类模型对反射率光谱信息进行分析可以实现对高光谱图像中待分类垃圾的识别与分类。收集常见纸质、塑料、木质三种材料的可回收的垃圾样本,包括塑料瓶、食品包装袋、塑料玩具(饰品)碎片、一次性筷子、雪糕棒、木制家具碎片、木制包装盒、废旧课本、广告纸、办公用纸等多种物品共30个样本,进行清洗和裁剪处理,避免样本表面污渍对样本反射率产生影响。利用高光谱成像系统采集样本在近红外(780~1 000 nm)范围内的高光谱图像,其中18个样本做训练样本集,12个样本做测试样本集。对采集的样本图像数据做预处理,包括去噪声以及黑白校正反演反射率信息等处理;通过主成分分析(PCA)方法对训练样本集感兴趣区域(ROI)进行分析,提取到的特征波段为795.815,836.869,885.619,916.409,929.239,934.37,957.463,972.858和988.253 nm;在特征波段下分别提取这三种类别垃圾的参考光谱,通过光谱角度填图法(SAM)对测试样本ROI区域内提取的测试样本点集在特征波段下与参考光谱进行匹配,由匹配程度进行样本点归类,分析结果表明,测试样本集中纸制样本(A类别)、塑料样本(B类别)、木制样本(C类别)的分类准确度分别为100%,98%和100%,测试样本点集整体的分类准确度为99.33%;通过Fisher判别方法分析训练样本集得出判别函数式和判别准则,对测试样本点集分类,评价结果为A,B和C类样本分类准确度分别为100%,100%和97%,测试样本点集整体分类准确度为99%。通过SAM和Fisher两种判别方法对测试样本集的光谱图像进行目标物的检测与分类,结果表明,利用SAM判别方法在可回收垃圾的高光谱图像中实现检测与分类有更高的分类准确度,可达到99.33%。同时,也验证了使用高光谱成像进行可回收垃圾快速分类的科学性以及可行性,对未来系统化、机械化、智能化地解决生活中可回收垃圾的分类具有一定的实用意义。  相似文献   

5.
基于高光谱成像技术应用光谱及纹理特征识别柑橘黄龙病   总被引:2,自引:0,他引:2  
讨论了基于高光谱成像技术光谱及纹理特征在识别早期柑橘黄龙病中的应用。使用一套近地高光谱成像系统采集了176枚柑橘叶片的高光谱图像作为实验样品,其中健康叶片60枚,黄龙病叶片60枚,缺锌叶片56枚。手工选取每幅叶片高光谱图像的病斑位置作为样品感兴趣区域(regions of interest, ROI),计算其平均光谱反射率,并以此作为样品的反射光谱,光谱范围为396~1 010 nm。样品光谱分别经过主成分分析(PCA)及连续投影算法(SPA)进行数据降维,再结合最小二乘支持向量机(LS-SVM)分类器建立分类模型。相比原始光谱,由PCA选取的前四个主成分及SPA选取的一组最佳波长组合(630.4,679.4,749.4和899.9 nm)建立的模型拥有更好的分类识别能力,其对三类柑橘叶片平均预测准确率分别为89.7%和87.4%。同时,从被选四个波长的每幅灰度图像中提取6个灰度直方图的纹理特征以及9个灰度共生矩阵的纹理特征再次构建分类模型。经SPA优选的10个纹理特征值进一步提高了分类效果,对三类柑橘叶片的识别正确率达到了100%,93.3%和92.9%。实验结果表明,同时包含光谱信息及空间纹理信息的高光谱图像在柑橘黄龙病的识别中显示了很大的潜力。  相似文献   

6.
基于近地高光谱成像技术结合化学计量学方法,实现了黑豆品种的鉴别。实验以三种不同颜色豆芯的黑豆为研究对象,采用高光谱成像系统采集380~1 030 nm波段范围的高光谱图像,提取高光谱图像中的样本感兴趣区域平均光谱信息作为样本的光谱进行分析,建立黑豆品种的判别分析模型。共采集180个黑豆样本的180条平均光谱曲线。剔除明显噪声部分之后以440~943 nm范围光谱为黑豆样本的光谱,采用多元散射校正(multiplicative scatter correction,MSC)对光谱曲线进行预处理。分别以全部光谱数据、主成分分析(principal component analysis,PCA)提取的光谱特征信息、小波分析(wavelet transform,WT)提取的光谱特征信息建立了偏最小二乘判别分析法(partial least squares discriminant analysis,PLS-DA),簇类独立模式识别法(soft independent modeling of class analogy,SIMCA),最邻近节点算法(K-nearest neighbor algorithm,KNN),支持向量机(support vector machine,SVM), 极限学习机(extreme learning machine,ELM)等判别分析模型。以全谱的判别分析模型中,ELM模型效果最优;以PCA提取的光谱特征信息建立的模型中,ELM模型也取得了最优的效果;以WT提取的光谱特征信息建立的模型中,ELM模型结识别效果最好,建模集和预测集识别正确率达到100%。在所有的判别分析模型中,WT-ELM模型取得了最优的识别效果。实验结果表明以高光谱成像技术对黑豆品种进行无损鉴别是可行的,且WT用于提取光谱特征信息以及ELM模型用于判别黑豆品种能取得较好的效果。  相似文献   

7.
基于迭代Tikhonov正规化的三刺激值重建光谱方法研究   总被引:2,自引:0,他引:2  
光谱图像中的反射率光谱数据维数高,且与光源、设备均无关,能够比较全面、真实、客观地描述图像中物体的颜色信息。针对三色相机的光谱图像获取系统中三维色度数据重建多维光谱数据产生的光谱信息丢失、以及伴随而生的颜色信息丢失问题,提出了迭代Tikhonov正规化的光谱重建方法。首先依据色度学理论中色度值与反射率光谱之间的关系,构建反射率光谱重建方程建立起相机所获三维色度数据与高维反射率光谱数据的映射关系;然后,通过反射率光谱重建方程的病态分析,在Moore-Penrose伪逆矩阵求解思想的基础上构建迭代Tikhonov正规化方法求解反射率光谱,并利用训练样本数据通过L-曲线方法训练获取迭代Tikhonov正规化的最优正规化参数,以有效控制并改善反射率光谱重建方程求解的病态、减少重建光谱的光谱信息丢失。实验通过选取样本数据对光谱重建方法进行验证。验证实验的结果表明所提出的光谱重建方法改善了三色相机的光谱图像获取系统中重建光谱的光谱信息丢失程度,使得重建光谱的光谱误差和色度误差较其他光谱重建方法均有明显降低。  相似文献   

8.
基于高光谱特征与人工神经网络模型对土壤含水量估算   总被引:3,自引:0,他引:3  
土壤含水量(θ)是影响作物生长和作物产量的主要因素之一。旨在评估基于光谱特征参数的各种回归模型估算土壤含水量的精度,并比较人工神经网络(BP-ANN)和光谱特征参数模型的性能。2014年在室内获取砂土和壤土的土壤含水量和光谱反射率数据。结果表明:(1)当砂土容重为1.40 g·cm-3时,900~970 nm最大反射率和900~970 nm反射率总和估算θ达到极显著水平(R2超过0.90);容重为1.50 g·cm-3时,用蓝边最大反射率和900~970 nm反射率总和估算θ相关性最好(超过0.70);容重为1.60 g·cm-3时,780~970 nm反射率总和与560~760 nm归一化吸收深度的R2均超过0.90,达到极显著水平;容重为1.70 g·cm-3时,900~970 nm最大反射率和900~970 nm反射率总和的R2为0.88,呈极显著水平。(2)当土壤类型为壤土时,用900~970 nm最大反射率和900~970 nm反射率总和估算θ相关性最好。(3)蓝边反射率总和(R2=0.26和RMSE=0.09 m3·m-3)和780~970 nm吸收深度(R2=0.32和RMSE=0.10 m3·m-3)估算砂土的含水量相关性最好。在估算壤土的含水量时,900~970 nm最大反射率(R2=0.92和RMSE=0.05 m3·m-3)与900~970 nm反射率总和估算模型的精度最高(R2=0. 92和RMSE=0.04 m3·m-3)。(4)用人工神经网络模型能够更好地估算两种土壤的含水量(R2=0.87和RMSE=0.05 m3·m-3)。因此,人工神经网络模型对θ估算具有巨大的潜力。  相似文献   

9.
高光谱成像技术的库尔勒梨早期损伤可视化检测研究   总被引:2,自引:0,他引:2  
利用高光谱成像技术对库尔勒梨早期损伤进行快速识别检测。以60个库尔勒梨为研究对象,采集380~1 030 nm波段范围内完好样本和损伤后1~7天样本的480幅高光谱图像。提取图像中感兴趣区域(ROI)的平均光谱信息,利用小波变换(WT)对光谱数据进行去噪平滑,将去噪后的全部样本按2∶1的比例分成建模集(320个)和预测集(160个)。利用二阶导数从全谱信息中提取出19个特征波长,分别基于全谱和提取出的特征波长对建模集和预测集进行支持向量机(SVM)建模分析。结果表明,基于全谱和特征波长的判别分析模型中,两者预测集的识别率都达到93.75%,表明提取的特征波长包含了光谱数据中的关键信息。然后,基于特征波长运用波段比运算挑选最佳波段比,根据波段比F值的分布确定光谱图像分割的最佳波长684和798 nm。对最佳波段比(684/798 nm)下的图像,利用选择性搜索(SS)对高光谱图像中样本的完好和损伤区域进行分割,从分割结果来看,1~7天损伤样本的受损区域能够被准确检测出来。研究结果表明:基于高光谱成像技术对库尔勒梨进行损伤鉴别是可行的,该研究所获得的特征波长和波段比为研发在线实时的库尔勒梨损伤检测系统提供支撑。  相似文献   

10.
可见与近红外波段光谱反射率数据库是颜色科学与技术和遥感目标地物分类识别领域等研究与应用的基础数据。主成分分析(PCA)在光谱数据分析、光谱重建、高光谱数据降维以及遥感图像分类等方面有广泛应用。测量并建立了云南公园常见绿化植物柳树、樟、红花檵木、蓝花楹等48种植物150条叶片从可见光到近红外波段光谱反射率数据库,波长范围400~1 000 nm、间隔4 nm。并且分别对可见与可见到近红外两种波段范围进行PCA研究。结果表明:不同植物叶片按照红、绿、黄相同色相的光谱反射率曲线基本相似;但对于同一种植物,在可见光波段400~700 nm,因为体内叶绿素、叶黄素、叶红素和花青苷含量的不同,光谱反射率曲线有较大的差异;在近红外波段700~1 000 nm,所有植物叶片光谱反射率仅仅是大小不同,而同一植物光谱反射率基本不随波长变化。PCA分析表明:在可见光和可见与近红外波段前三个主成分的累积贡献率分别达到98.62%和94.97%。数据库及其PCA分析结果将为自然物体光谱重建、多光谱成像技术和遥感目标地物分类识别等领域应用提供支撑。  相似文献   

11.
开展种子品种的识别研究是保证种子质量的重要手段。利用高光谱图像技术融合图像特征信息对脱绒棉种的品种进行判别分析。采集4个品种共240粒脱绒棉种样本的高光谱图像数据(400~1 000 nm),提取样本的光谱信息及长、宽、面积、圆形度、等12个形态特征。采用连续投影算法(SPA)选出11个特征波段作为输入结合偏最小二乘判别分析法(PLS-DA)、软独立模式识别法(SIMCA)、最邻近节点算法(KNN)、主成分分析结合线性判别(PCA-LDA)及二次判别(PCA-QDA)进行建模分析,得出PLS-DA建模集和预测集的总体识别率分别为93%和90%。利用图像信息进行建模分析,模型整体的识别率均不高,说明单独使用高光谱图像的形态特征进行分类效果不佳。将特征波段的光谱和形态特征信息进行融合作为输入,建立基于PLS-DA,SIMCA,KNN,PCA-LDA及PCA-QDA的信息融合模型,其精度均比基于光谱或形态信息模型高,其中PLS-DA模型识别效果最好,建模集和预测集总体识别率分别为98%和97%。表明融合高光谱图像的光谱与图像信息可以在少量波段情况下有效的提高脱绒棉种品种的分类检测精度。  相似文献   

12.
基于高光谱图像技术的玉米杂交种纯度鉴定方法探索   总被引:2,自引:0,他引:2  
对玉米种子高光谱图像的光谱维信息进行分析,探索利用高光谱图像技术鉴定玉米杂交种纯度的可行性。实验中利用高光谱成像系统采集玉米品种农华101的母本和杂交种的高光谱图像, 波长范围871~1699 nm;在每个玉米样本上提取感兴趣区域的平均光谱信息,利用处理后的数据建立农华101母本和杂交种的鉴定模型。讨论了样品的摆放方式(种子胚正对光源和背对光源,种子在样品台上的位置)和实验环境对鉴定模型性能的影响。鉴定模型对不同摆放方式和实验环境下获得的同种样品的光谱的正确识别率和正确拒识率均达到90%以上,模型稳健性良好。利用Qs方法选择特征波段[1],发现在1 230 nm附近(1 195~1 246 nm)农华101的母本和杂交种差异最大。实验中利用特征波段内的数据进行建模和测试,正确识别率和正确拒识率达到90%以上,与利用全波段(925~1597 nm)获得的识别效果相当。分析结果表明,利用高光谱图像技术鉴定玉米杂交种纯度是可行的。  相似文献   

13.
高寒灌丛是青藏高原生态系统的重要组成部分,研究高寒灌丛对青藏高原生态系统的系统研究具有重要的意义。但是长期以来,由于地处偏远而交通欠发达、加之生长条件严酷,造成青藏高原高寒灌丛相关研究较为困难。遥感探测技术,可以克服地理及环境造成的困难,而且可以进行大面积、无损的探测,因此,可以采用遥感探测技术进行青藏高原的高寒灌丛研究。传统的高分辨率遥感探测技术,由于常常采用的是RGB三个波段,对不同植物的辨别精度低,对应植物的NDVI指数和RVI指数差异性较小,不能有效区分各类植被。同时,高光谱反射率曲线和辐照度曲线,蕴含上千波段的光谱信息,若选择某一单一波段来进行植被探测,则光谱信息损失非常大,反应出来的灌丛特征不明显,结果置信度低。为了区别高寒灌丛植被,利用高光谱技术对灌丛开展光谱特征分析,为青藏高原灌丛的遥感探测提供理论支持。本研究借助美国FieldSpec4高分辨率地物光谱仪,在东祁连山马牙雪山景区内采集头花杜鹃(Rhododendron capitatum Maxim.)、鬼见愁(Caraganajubata (Pall.) Poir.)、金露梅(Potentillafruticosa L.)、高山柳(Salix cupularis)、甘肃瑞香(Daphne tangutica Maxim.)和鲜黄小檗(Berberisdiaphana)六种典型灌木植物的室内光谱数据,通过反射率(REF)、吸收率(ABS)及其一阶微分(GREF和GABS)的变换,进一步提高灌木植物光谱曲线间的可辨析度,分析并筛选出敏感波段,而后通过各个波段之间的相互组合计算NDVI′值和RVI′值,并且以TM设置波段计算的NDVI值和RVI值作为参考,筛选出优于TM波段且差值最大的波段组合确定为最优模型。结果表明:(1)灌木植物对太阳辐射吸收形成的光谱特征曲线与大多数植物相似,但与草本植物相比,灌木植物的第一个波谷发生了左移现象;(2)灌木植物在某些敏感波段中反映出独有的光谱特征,通过REF,ABS,GREF和GABS变换,可以进一步扩大,利用这一特点可以筛选出敏感波段,进行灌丛分类和识别;(3)六种灌木植物光谱值差异较大,且数值相对较为稳定的波段有550~680,860~1 075,1 375~1 600和1 900~2 400 nm,因此可选取这四个波段为敏感区进行灌木植物识别;(4)利用575~673和874~920 nm敏感波段的REF均值或者685~765,556~590,635~671和1 117~1 164 nm敏感波段的GABS面积,计算的NDVI值和RVI值可以有效辨别六种灌木植物。  相似文献   

14.
亚热带土壤铬元素的高光谱响应和反演模型   总被引:6,自引:0,他引:6  
高光谱遥感技术已成为当前遥感领域的前沿技术,因其高分辨率的特点,可利用地物反射光谱特征定量反演地物的物理化学性质。目前土壤环境质量愈来愈受到关注,土壤重金属含量与土壤环境质量安全密切相关,以往土壤高光谱遥感技术研究多注重于土壤有机成分如土壤碳氮的光谱反演模型,对土壤重金属含量的高光谱反演研究普遍较少。土壤重金属污染已经成为影响土壤质量安全的关键因素,对土壤重金属尤其是污染元素普查是当务之急。传统土壤重金属的测试方法要求条件较高,测试周期较长,试图建立土壤高光谱与土壤铬元素(ICP-MS测定)含量之间的定量预测模型,以实现土壤铬元素的快速准确预测。采集福州市土壤样品135个,对土壤样品在350~2 500 nm的光谱反射率进行倒数、对数、微分等六种变换,筛选出对土壤总铬含量敏感的光谱波段,最后获得福州土壤铬元素高光谱反演优化模型。研究结果表明:亚热带红壤总铬的敏感光谱波段为:可见光520~530 nm和近红外1 440~1 450,2 010~2 020,2 230~2 240 nm;亚热带地区土壤总铬—高光谱反演的优化模型为: y=120.768e-7.037x(相关系数R为0.568,均方根误差为0.619 μg·g-1,检验相关系数R为0.484,均方根误差为1.426 μg·g-1),该模型可以用于福州地区土壤全铬的光谱快速监测。  相似文献   

15.
当今全球范围内有机食品行业发展迅速,体现出消费者对食品质量安全的重视。相比于普通鸡蛋,有机鸡蛋因严格的生产条件以及更高的营养价值生产成本更高、售价更贵。市面上所销售的有机鸡蛋虽取得了严格有机食品认证标识,但依旧不能阻止不法份子将普通鸡蛋冒充有机鸡蛋销售,从而谋取利润。这一行为不仅会损害有机鸡蛋生产商的利益,也降低了人们对有机食品的信任度,为此需要一种有效的对有机鸡蛋和普通鸡蛋无损鉴别方法。使用高光谱技术透射成像的方式,可以获取物质内部的信息,以有机鸡蛋和普通鸡蛋为试验对象,采集鸡蛋样本364~1 025 nm波长范围的高光谱图像数据,从采集到的数据中提取出鸡蛋蛋清和蛋黄感兴趣区域(ROI)的平均透射光谱数据。根据透射光谱曲线图筛选出有机鸡蛋与普通鸡蛋光谱响应差异明显的波段区间,分别通过偏最小二乘判别分析(PLS-DA)和支持向量机(SVM)建立鸡蛋类别的鉴别模型,结果表明模型分别根据蛋黄区域与蛋清区域数据进行建模的鉴别准确率相近,进一步对蛋黄区域数据进行分析。由于高光谱数据量大且存在大量冗余信息,给数据采集、存储、传输和建模处理都带来不便,因此分别通过连续投影算法(SPA)和竞争性自适应重加权算法(CARS)对蛋黄ROI数据进行降维处理,剔除了大量冗余信息后再建模。最终,使用对蛋黄ROI区域运用SPA降维后得到的23个特征波长建立的SPA-SVM鉴别模型在测试集的准确率最高达到94.2%。结果表明,通过高光谱技术对有机鸡蛋和普通鸡蛋进行无损鉴别有一定效果。  相似文献   

16.
突变体的筛选与鉴定是育种工作中的重要环节。该研究基于高光谱成像技术实现了水稻CRISPR/Cas9突变体种子的可视化鉴别。采集了水稻HD野生型和CRISPR/Cas9突变体种子共1 200粒样本的高光谱图像数据,通过Kennard-Stone算法,按照2∶1的比例构建了建模集(800)和预测集(400)。对水稻种子的原始光谱经过WT预处理后,通过2nd derivative提取了24个特征波长,分别基于全谱和特征波长建立径向基函数神经网络(RBFNN),极限学习机(ELM)和K最邻近法(KNN)模型。试验结果表明,无论是基于全谱还是特征波长神经网络模型都取得了良好的识别能力。通过2nd derivative提取的特征波长结合RBFNN模型也取得了较好的鉴别结果,其建模集和预测集分别达到了92.25%和89.50%。基于2nd derivative-RBFNN结合图像处理技术,可以实现水稻CRISPR/Cas9突变体种子的可视化鉴别,实现种子的定位和识别。结果表明应用高光谱成像技术,结合化学计量学方法和图像处理技术对水稻CRISPR/Cas9突变体的鉴别具有可行性,可为水稻育种中大量突变体的快速、准确地筛选和鉴定提供技术手段。  相似文献   

17.
基于高光谱成像技术的番茄叶片灰霉病早期检测研究   总被引:1,自引:0,他引:1  
提出了独立软模式法(SIMCA)的番茄叶片灰霉病特征波段图像的提取,并通过多元线性回归法(MLR)提取波段融合图像,通过最小距离法获取番茄灰霉病患病信息的技术路线。利用680~740 nm波段的方差图像和建模能力参数提取的特征波段,并作为输入变量进行MLR分析,在0.5准确率阈值下,准确率均大于99%,说明特征波段可以实现番茄叶片灰霉病的检测,并利用MLR回归系数提取波段融合图像,通过最小距离法获取番茄灰霉病患病信息,结果表明所提出的方法具有很好的预测能力,为番茄灰霉病的早期检测提供了一种新方法,且大大降低了高光谱图像的数据处理时间。  相似文献   

18.
亚热带红壤全氮的高光谱响应和反演特征研究   总被引:4,自引:0,他引:4  
利用高光谱遥感技术反演土壤性质已经成为土壤学和遥感科学研究领域的新手段,特别对土壤化学元素含量的高光谱反演,已成为土壤元素快速监测方法的的研究热点。以往研究往往关注不同类型土壤的化学元素光谱响应特征模型,以试图找到普适性的元素-光谱反演模型。由于成土因素的复杂性,土壤类型及其化学元素分布具有明显的空间异质性特征,宏观尺度上的土壤-光谱统计反演模型客观上具有较大的不确定性。若范围缩小到同一个气候带,土壤生物地球化学反应过程较相似,土壤化学元素-光谱反演模型的不确定性相对较小。以福州市为研究区,采集福州市典型红壤样品135个,研究土壤全氮含量的高光谱响应特征,对土壤样品在350~2 500 nm的光谱反射率分别进行倒数对数、微分等五种变换,分析变换后的光谱信息与土壤总氮含量的相关性,筛选出强相关敏感波段,通过设计不同的建模和验证样品比例,用逐步多元线性回归获得福州土壤的氮元素高光谱反演优化模型。结果表明:亚热带红壤全氮的敏感光谱波段为:可见光634~688 nm和红外872,873,1 414和1 415 nm;亚热带沿海地区土壤全氮—高光谱反演的优化模型为: Y=5.384X664-1.039(决定系数R2为0.616,均方根误差为0.422 mg·g-1,检验R2为0.608,均方根误差为0.546 mg·g-1),该模型可以用于福州地区土壤全氮的光谱快速监测。  相似文献   

19.
针对某些特定环境下,伪装目标和背景目标出现的“异物同谱”现象,传统的可见光及多光谱遥感伪装识别存在局限性,为此,将高光谱应用到典型伪装材料的特征分析与识别。以北方地区常用丛林迷彩伪装网为研究对象,利用SVC HR1024光谱仪获取其不同浸水时间的可见光-近红外光谱,通过光谱相似性度量和包络线去除处理,分析揭示不同浸水条件下伪装网和北方典型植被光谱特征和敏感波段,并基于近红外波段构建光谱比值指数RCI,用于识别绿色植被环境中的伪装目标,最后通过高光谱成像实验获取仿真伪装环境高光谱图像,并利用高光谱图像对识别效果进行验证。结果显示:(1)不同浸水时间的丛林迷彩伪装网的光谱曲线基本形态相似,且反射率随浸水时间的增加而整体呈下降趋势;1 900 nm波段是伪装网反射光谱对含水量响应最为明显的波段,其光谱特征会因浸水处理而相似于植被,相似度从0.895提高到了0.939。(2)丛林迷彩伪装网和植被在可见光波段的相似度较高,光谱波动情况相似,但在近红外波段光谱特征差异明显。通过包络线统去除分析得出970, 1 190和1 440 nm波段附近处是丛林迷彩伪装网识别的敏感波段,且基于迷彩伪装网和各植...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号