首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Conducting polymer composites of polypyrrole (PPy) and silver doped nickel oxide (Ag-NiO) nanocomposites were synthesised by in situ polymerisation of pyrrole with different contents of Ag-NiO nanoparticles. The formation of nanocomposites were studied by Fourier transform infrared (FTIR) and UV–vis spectroscopy, field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and AC and DC conductivity measurements. The sensitivity of ammonia gas through the nanocomposite was analysed with respect to different contents of nanoparticles. Spectroscopic studies showed the shift in the absorption bands of polymer nanocomposite than that of pure PPy indicating the strong interaction between the nanoparticles and polymer chain. FESEM revealed the uniform dispersion of nanoparticles with spherically shaped metal oxide particles in PPy matrix. The XRD pattern indicated a decrease in amorphous domain of PPy with increase in loading of nanoparticles. The higher thermal stability and glass transition temperature of polymer nanocomposites than that of pure PPy were revealed from the TGA and DSC respectively. The dielectric properties, DC and AC conductivity of nanocomposites were much higher than PPy and these electrical properties increases with the loading of nanoparticles. The nanocomposites showed an enhancement in sensitivity towards ammonia gas detection than PPy.  相似文献   

2.
Isotactic polypropylene (IPP) and calcium carbonate (CaCO3) nanocomposites were prepared by melt extrusion in a twinscrew extruder. The effect of CaCO3 nanoparticles on the crystallization and thermal conductivity (TC) of PP was studied by thermal analysis (DSC) and thermal conductivity analysis (TCA). The introduction of CaCO3 nanoparticles resulted in an increase in crystallinity. The incorporation of this nanoparticle (up to 15 phr) caused a significant increase of TC of PP, especially for larger filler content. Several models were used for prediction of TC of the nanocomposites. The experimental results had a good correlation with the Ce Wen Nan Model.  相似文献   

3.
In this paper, polyamide 6/montmorillonite nanocomposites (PA6CNs) were prepared via conventional and an ultrasonic extrusion technology developed in our laboratory. The structure and morphology of montmorillonite dispersed in conventional and ultrasonicated PA6CNs were studied by x‐ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The experimental results gained by XRD, differential scanning calorimetry (DSC), and polarizing optical microscopy (POM) showed that the dispersed morphology of montmorillonite plays an important role in the crystalline form, nucleation rate, crystallization temperature, crystallinity, and spherulite size of PA6 crystals. The ductility of conventional PA6CNs decreases with the addition of montmorillonite because of the presence of large, stacked montmorillonite particles. Compared with the conventional PA6CNs, the elongation at break and impact strength of the ultrasonicated PA6CN increase greatly due to the improved dispersion of montmorillonite and decreased size of spherulites, while also showing the higher yield strength. Thermogravimetric analysis (TGA) revealed a decrease in thermal stability of conventional PA6CNs, with the introduction of ultrasound further accelerating thermal decomposition. A possible explanation for the observed decrease in polymer thermal stability on ultrasonic treatment is provided.  相似文献   

4.
Silver (Ag) and silver sulfide (Ag2S) nanoparticles were synthesized in a sago starch matrix. The resulting nanocomposites were investigated using structural, optical and thermal methods. XRD spectra of the nanocomposites confirmed the presence of nanostructured silver (cubic phase) and silver sulfide (monoclinic phase) in the matrix. TEM micrographs showed that the nanoparticles are mostly spherical in shape. Analyzes of the optical properties of the silver nanocomposite aqueous dispersions/solutions of various concentrations were carried out. The results and the theoretical considerations suggested that at high concentrations there is a release of silver nanoparticles from the composite in the water environment. Further dilution produces homogeneous solution in which silver nanoparticles are capped with starch macromolecules. TGA analysis revealed reduced thermal stability of the nanocomposites with respect to pure starch matrix.  相似文献   

5.
Blends of poly (ethylene oxide)‐b‐polystyrene (PEO‐b‐PS) diblock copolymer and poly (2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) homopolymer were obtained by solution blending, and the morphologies of PEO dispersed nanoparticles in PPO/PS matrix were observed by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The isothermal crystallization kinetics was studied using differential scanning calorimetry (DSC) and polarized optical microscopy (POM). Nonisothermal crystallization kinetics was studied using DSC. The results showed that PEO segments were easier to crystallize in the blend than in the copolymer probably due to the interfaces of PPO acting as nucleation sites to promote the crystallization of PEO. The crystallization of PEO blocks destroyed the pre‐existing microdomain structure even though the glass transition temperature of the matrix was much higher than the crystallization temperature.  相似文献   

6.
In this study, polyurethane/titania (PU/TiO2) nanocomposites were prepared in ultrasonic process and characterized by fourier transform IR spectroscopy (FT-IR), powder X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and infrared emissivity analysis. The TEM and SEM results indicated that the nanoparticles were dispersed homogeneously in PU matrix on nanoscale. TGA-DSC confirmed that the heat stability of the composite was improved. Infrared emissivity study showed that the nanocomposite possessed lower emissivity value than those values of pure polymer and nanoparticles.  相似文献   

7.
The surface of α-alumina (Al2O3) nanoparticles was first modified with γ-aminopropyltriethoxy silane as a coupling agent. Then a series of poly(vinyl alcohol)/ surface modified Al2O3 nanocomposite suspensions were prepared in ethanol by a simple ultrasonic irradiation process. Composite films with 5, 10, and 15 wt % of inorganic Al2O3 nanoparticles were achieved after solvent evaporation. The formation of the composite materials were confirmed by Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and optical transparencies. The FE-SEM and TEM results showed a homogenous dispersion of nanoscale inorganic particles in the poly(vinyl alcohol) matrix. TGA thermographs showed that the thermal stability of the prepared Al2O3-reinforced nanocomposites was improved, increasing with increasing content of the nanoparticles. According to the optical transparencies, the optical clarity of poly(vinyl alcohol)/Al2O3 nanocomposite films was only slightly affected by the presence of the Al2O3 content.  相似文献   

8.
Nano-Sb2O3 particles and brominated epoxy resin (BEO) powders were dispersed in poly (butylene terephthalate) (PBT) by high energy ball milling (HEBM). Then the nanocomposites were prepared by a twin screw extruder. The influence of the nano-Sb2O3 particles on the crystallization, thermal stability, flame retardancy and mechanical properties of the PBT/BEO/nano-Sb2O3 composites were investigated by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), limiting oxygen index (LOI), UL-94 tests and scanning electron microscopy (SEM). The results showed that the nano-Sb2O3 particles improved the crystallizability, thermal stability and flame retardancy properties of the PBT/BEO/nano-Sb2O3 composites. When the content of nano-Sb2O3 particles was 2.0?wt%, the LOI of nano-Sb2O3/BEO/PBT composites increased from 22.0 to 27.8 and the tensile strength reached its maximum value (62.44?MPa), which indicated that the optimum value of flame retardancy and mechanical properties of PBT/BEO/nano-Sb2O3 composites were obtained.  相似文献   

9.
The thermal behaviors of glycidyl methacrylate (GMA)-grafted polypropylene (PP) (PP-g-GMA) with two different grafting degrees, namely, GPP1 and GPP2, were investigated by differential scanning calorimetry (DSC), polarized optical microscopy (POM), wide-angle X-ray diffraction (WAXD), dynamic mechanical analysis (DMA), and thermogravimetrical analysis (TGA). DSC results suggested that the GMA grafted PP exhibited higher crystallization temperature Tc, higher melting temperature Tm, and higher crystallinity compared with the neat PP. The isothermal crystallization kinetics was analyzed with the Avrami equation and the total crystallization activation energy was calculated. It was concluded that the crystallization processes of PP and the grafted PP were controlled by nucleation and the values of the crystallization activation energy of PP and the grafted PP were almost identical. POM results suggested that the GMA grafted PP exhibited smaller spherulites size compared with the neat PP. WAXD patterns indicated that the neat PP encouraged the formation of γ phase, compared with the grafted PP, during the crystallization process. DMA results showed that melt grafting did not induce a clear effect on the γ-transition and β-transition of the amorphous phase but resulted in a decrease in mobility of the PP chains in the crystals. TGA curves suggested that the melt grafting slightly improved the thermal stability of PP.  相似文献   

10.
In the present study, we report the green and one-pot synthesis of silver nanoparticles (AgNPs) on as-prepared novel polyoxometalate {[Ni2,5(Hpen)4(PW9O34)]?·?5H2O} (POM) without any reducing agent and its application as improved anode material for lithium-ion batteries (LIBs). The structure of the AgNPs involved POM (AgNPs/POM) nanocomposite was characterized by transmission electron microscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy. The synthesized POM was also characterized by elemental analysis and thermal analysis. The electrochemical performances of the POM, AgNPs, and AgNPs/POM composites were measured for charge/discharge specific capacities at different current rates in CR2032 coin-type cells. The prepared AgNPs/POM composite showed a high specific gravimetric capacity of about 1760 mAh g?1 and long-term cycle stability.  相似文献   

11.
The PA66-based nanocomposites containing surface-modified nano-SiO2 were prepared by melt compounding. The interface structure formed in composite system was investigated by thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The influence of interface structure on material's mechanical and thermal properties was also studied. The results indicated that the PA66 chains were attached to the surface of modified-silica nanoparticles by chemical bonding and physical absorption mode, accompanying the formation of the composites network structure. With the addition of modified silica, the strength and stiffness of composites were all reinforced: the observed increase depended on the formation of the interface structure based on hydrogen bonding and covalent bonding. Furthermore, the differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) showed that the presence of modified silica could affect the crystallization behavior of the PA66 matrix and lead to glass transition temperature of composites a shift to higher temperature.  相似文献   

12.
Attapulgite (AT) was modified by grafting with butyl acrylate (BA) via polymerizations initiated by Gamma radiation. Polypropylene (PP)/AT nanocomposites were synthesized via melt extrusion in a twin-screw extruder. Fourier transform infrared (FTIR) spectroscopy and thermogravimetry (TG) were used to assess the structure of the hybrid materials and the dispersion of AT was verified by transmission electron microscopy (TEM). The crystallization kinetics of PP/AT nanocomposites were investigated by differential scanning calorimetry (DSC) and analyzed by using the Avrami method. The isothermal crystallization kinetics showed that the addition of AT increased both the crystallization rate and the isothermal Avrami exponent of PP. Step-scan differential scanning calorimetry (SDSC) was used to study the influence of AT on the crystallization and subsequent melting behavior. The results revealed that PP and PP/AT nanocomposites experienced multiple melting and secondary crystallization processes during heating. The melting behaviors of PP and PP/AT nanocomposites varied with the variation of crystallization temperature and AT content.  相似文献   

13.
Abstract

A series of polycarbonate (PC)/acrilonitrile butadiene rubber (NBR)/multi-wall carbon nanotube (MWCNT) nanocomposites were prepared via melt compounding in an internal mixer. The effect of the MWCNT content on the morphology and the thermal and mechanical properties of the prepared nanocomposites were studied. The morphologies of the samples were investigated by field-emission scanning electron microscopy (FESEM) and the thermal properties by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The tensile mechanical results of the nanocomposites showed a decrease in elongation at break with an increase of only 2?wt% of MWCNT content in the PC/NBR blends, and an increasing value in elastic modulus and tensile strength of the nanocomposites. The FESEM images showed that the MWCNTs had good affinity with the polymers and no compatibilizer was needed for making the nanocomposites. The DSC and TGA results showed an increase in thermal stability with addition of MWCNTs because of the more thermally stable carbon nanotubes particles which was uniformly dispersed within the nanocomposites.  相似文献   

14.
《Current Applied Physics》2009,9(5):1097-1105
TiO2 nanoparticles doped with different Ag contents were prepared by a modified sol–gel method, using titanium tetraisopropoxide and silver nitrate as precursors and 2-propanol as solvent. Silver was incorporated into the TiO2 matrix via decomposition of AgNO3 during thermal treatment in different atmospheres. Effects of Ag doping on the crystallization and phase transition of the TiO2 nanoparticles were studied using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Raman spectroscopy techniques. While air annealing incorporates silver into TiO2 matrix in silver oxide form, annealing in nitrogen incorporates metallic silver into TiO2. Formation of silver oxide increases the thermal stability of the TiO2 particles. Silver oxide affects the crystallization process of TiO2 particles and the temperature of transition form anatase to rutile. On the other hand, presence of metallic silver in the samples annealed in nitrogen atmosphere decreases the temperature of phase transition of TiO2 nanoparticles.  相似文献   

15.
Graphene oxide (GO) sheets were pre-modified with a typical piezoelectric polymer, poly(vinylidene fluoride) (PVDF), using a simple supercritical carbon dioxide (SC CO2) method, and then the PVDF-decorated GO was added into a PVDF matrix by solution blending. Transmission electron microscopy (TEM) revealed that the decorating degree of PVDF on the surface of the GO increased significantly with increasing of SC CO2 pressure and PVDF concentration. The mechanism of the polymer adsorption on the GO sheets through favorable interaction between the GO and PVDF chains was identified via Fourier transform infrared spectroscopy (FTIR). Further, the crystallization behavior of PVDF/GO composites was investigated by differential scanning calorimetry (DSC), FTIR and polarized optical microscopy (POM). Interestingly, the composite with PVDF-decorated GO as the filler showed higher β-phase content compared to the composite with pristine GO as the filler. The study showed that the supercritical fluid-induced epitaxial crystallization process has significant potential for fabricating functional GO-based nanocomposties containing piezoelectric or conducting materials.  相似文献   

16.
The crystallization kinetics of poly(ethylene terephthalate)/attapulgite (AT) nanocomposites and their melting behaviors after isothermal crystallization from the melt were investigated by DSC and analyzed using the Avrami method. The isothermal crystallization kinetics showed that the addition of AT increased both the crystallization rate and the isothermal Avrami exponent of PET. Step-scan differential scanning calorimetry was used to study the influence of AT on the crystallization and subsequent melting behavior in conjunction with conventional DSC. The results revealed that PET and PET/AT nanocomposites experience multiple melting and secondary crystallization processes during heating. The melting behaviors of PET and PET/AT nanocomposites varied in accordance with the crystallization temperature and shifted to higher temperature with the increase of AT content and isothermal crystallization temperature. The main effect of AT nanoparticles on the crystallization of PET was to improve the perfection of PET crystals and weaken its recrystallization behavior.  相似文献   

17.
针对Ziegler-Natta/茂金属复合催化剂基于Spheripol工艺制备的聚丙烯釜内合金的初生粒子中存在的两种外观形貌的粒子,采用红外光谱(FTIR)、核磁共振(NMR)、扫描电镜(SEM)、偏光显微镜(POM)、热分析(DSC)和力学性能测试等方法对白色和半透明的初生态树脂粒子进行了组成、结构和力学性能的比较研究。FTIR,NMR和SEM结果表明,两者外观形貌的差异主要是二段聚合中乙烯-丙烯共聚物的含量和分布不同。DSC和POM结果表明,乙烯-丙烯共聚物的存在使半透明粒子中聚丙烯的结晶速率高于白色粒子。力学性能测试结果表明,由于乙烯-丙烯共聚物含量少,白色粒子的冲击韧性明显低于半透明粒子,但拉伸强度和弯曲模量明显高于半透明粒子。并基于聚合工艺提出了两种初生粒子形成的可能机理。  相似文献   

18.
Cobalt nanoparticles coated with zinc oxide can form composite spheres with core-shell structure. This coating process was based on the use of silane coupling with agent 3-mercaptopropyltrimethoxysilane (HS-(CH2)3Si(OCH3)3, MPTS) as a primer to render the cobalt surface vitreophilic, thus it renders cobalt surface compatible with ZnO. X-ray photoelectron spectroscopy (XPS) was used to gain insight into the way in which the MPTS is bound to the surface of the cobalt nanoparticles. The morphological structure, chemical composition, optical properties and magnetic properties of the product were investigated by using transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), photoluminescence (PL) spectroscope and vibrating sample magnetometer (VSM). It was found that the Co/ZnO core-shell structure nanocomposites exhibited both of favorable magnetism and photoluminescence properties. Results of the thermogravimetric analysis (TGA) and differential thermal analysis (DTA) indicated that the thermal stability of cobalt/zinc oxide was better than that of pure cobalt nanoparticles.  相似文献   

19.
Poly(butylene terephthalate)/silica nanocomposites were prepared by in situ polymerization of terephthalic acid, 1,4-butanediol and silica. Transmission electron microscopy (TEM) was used to examine the quality of the dispersion of silica in the PBT matrix. The non-isothermal crystallization behavior of pure PBT and its nanocomposites was studied by differential scanning calorimetry (DSC). The results show that the crystallization peak temperatures of PBT/silica nanocomposites are higher than that of pure PBT at a given cooling rate. The values of halftime of crystallization indicate that silica could act as a heterogeneous nucleating agent in PBT crystallization and lead to an acceleration of crystallization. The non-isothermal crystallization data were analyzed with the Avrami, Ozawa, and Mo et al. models. The non-isothermal crystallization process of pure PBT and PBT/silica nanocomposites can be best described by the model developed by Mo et al. According to the Kissinger equation, the activation energies were found to be ?217.1, ?226.4, ?259.2, and ?260.2 kJ/mol for pure PBT and PBT/silica nanocomposites with silica weight content of 1, 3 and 5 wt%, respectively.  相似文献   

20.
In this article, ZnS nanoparticles were prepared by wet chemical precipitation method using zinc sulphate (ZnSO4), sodium sulphide (Na2S) and thio-glycerol. These nanoparticles were characterized through X-ray diffraction (XRD) and transmission electron microscope (TEM) measurements. The solution-based processing was used to prepare Poly methyl methacrylate (PMMA) nanocomposites with different weight percents (0, 2, 4, 6 and 8) of ZnS nanoparticles. The obtained ZnS/PMMA nanocomposites were characterized through XRD, scanning electron microscope and TEM measurements. The dynamic mechanical analyzer was used to obtain the storage modulus and glass transition temperature (T g) of the nanocomposites. The apparent activation energy of the glass transition region was also determined using the Vogel–Fulcher–Tammann equation. The results indicated that the thermal stability of ZnS/PMMA nanocomposites was higher than PMMA and 6 wt. % of ZnS nanoparticles in PMMA matrix showed the maximum activation energy, which indicated that this nanocomposite had higher thermal stability than other composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号