首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
This work reports the preparation, characterization and applications of silver nanoparticles synthesized through the chemical reduction of AgNO3 and protected by surface modifier. In order to characterize the formation of nanoparticles and the role of synthesis parameters (time, temperature) several studies were made, such as UV-vis spectroscopy, TEM and AFM. We present the incorporation of Ag nanoparticles in sol-gel obtained matrix, because this technique allows the incorporation of larger concentrations of active optical agents and the obtainment of full-dense films at lower temperature than those possible by other methods. The final goal of this work is the preparation of 80SiO2·20B2O3 films for active optical waveguides doped with Ag nanoparticles and Erbium. We are looking for the reinforcement of the fluorescence intensity due to the effect of the resonant coupling of both optical agents (Er and nanoparticles) to produce optical amplifiers.  相似文献   

2.
Corn-like cellulose nanocrystals/silver (CNC/Ag) nanocomposites were prepared by formic acid/hydrochloric acid hydrolysis of commercial microcrystalline cellulose (MCC), and redox reaction with silver ammonia aqueous solution (Ag(NH3)2(OH)) in one-pot green synthesis, in which the preparation and modification of CNCs were performed simultaneously and the resultant modified CNCs could be as reducing, stabilizing and supporting agents for silver nanoparticles. The influences of the Ag+ ion concentrations on the morphology, microstructure, and properties of the CNC/Ag nanocomposites were investigated. It is found that corn-like CNC/Ag nanocomposites containing Ag nanoparticles with diameter of about 20–40 nm were obtained. Compared to the MCCs, high crystallinity of 88.5 % and the maximum degradation temperature (T max) of 364.5 °C can be achieved. Moreover, the CNC/Ag nanocomposites showed strong antibacterial activity against both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. Furthermore, such nanocomposites can act as bifunctional nanofillers to improve thermal stability, mechanical property, and antibacterial activity of commercial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(lactic acid).  相似文献   

3.
The effects of addition of synthesized organic-suspension silver nanoparticles on the crystallization and thermal stability of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) were studied by transmission electron microscopy (TEM), differential scanning calorimetry (DSC), wide-angle X-ray diffraction (XRD), UV-Vis absorption spectroscopy, polarized optical microscopy (POM), and thermal gravimetric analysis (TGA). The TEM images showed the average primary size of the as-synthesized silver nanoparticles, coated with a monolayer of the surfactants consisting of oleic acid and an alkylamine, was about 5 nm with narrow distribution, and that they were uniformly dispersed in n-heptane. PHBV/silver nanocomposites were prepared by melt mixing in an internal mixer and then injection molded into rectangle-shaped specimens by a labscale injection molding device. The coated silver nanoparticles showed a homogenuous dispersion in the PHBV matrix when the content of coated silver nanoparticles was about 1%. Both the DSC and POM data showed the efficient heterogeneous nucleation by the coated silver nanoparticles for facilitating PHBV crystallization. The thermal stability of the PHBV/silver nanocomposites improved with the increase in the content of the coated silver nanoparticles.  相似文献   

4.
《Current Applied Physics》2009,9(5):1097-1105
TiO2 nanoparticles doped with different Ag contents were prepared by a modified sol–gel method, using titanium tetraisopropoxide and silver nitrate as precursors and 2-propanol as solvent. Silver was incorporated into the TiO2 matrix via decomposition of AgNO3 during thermal treatment in different atmospheres. Effects of Ag doping on the crystallization and phase transition of the TiO2 nanoparticles were studied using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Raman spectroscopy techniques. While air annealing incorporates silver into TiO2 matrix in silver oxide form, annealing in nitrogen incorporates metallic silver into TiO2. Formation of silver oxide increases the thermal stability of the TiO2 particles. Silver oxide affects the crystallization process of TiO2 particles and the temperature of transition form anatase to rutile. On the other hand, presence of metallic silver in the samples annealed in nitrogen atmosphere decreases the temperature of phase transition of TiO2 nanoparticles.  相似文献   

5.
The crystalline structure, surface morphology, electrical, and optical properties of thin films of nanocomposites consisting of silver nanoparticles embedded in poly(p-xylylene) matrix prepared by low-temperature vapor deposition polymerization were studied. Depending on the filler content, the average size of silver nanoparticles varied from 2 to 5 nm for nanocomposites with 2 and 12 vol.% of silver, correspondingly. The optical adsorption in the visible region due to surface plasmon resonance also exhibited a clear correlation from silver content, revealing a red shift of the adsorption peak with the increase of the metal concentration. The temperature dependences of the dc resistance of pure p-xylylene condensate and p-xylylene–silver cocondensates during polymerization as well as temperature dependences of the formed poly(p-xylylene)–silver nanocomposites were examined. The observed variation of the temperature dependences of electrical resistance as a function of silver concentration are attributed to different conduction mechanisms and correlated with the structure of the composites. The wide-angle X-ray scattering and AFM measurements consistently show a strong effect of silver content on the nanocomposite structure. The evolution of the size of silver nanoparticles by thermal annealing was demonstrated.  相似文献   

6.
Silver-containing nanocomposites were prepared by impregnating Vycor glass (a pore diameter of 4 nm) and synthesized opal matrices (an interstitial void size of 40 nm) with cyclooctadiene complex of silver hexafluoroacetylacetonate (Ag(hfac)COD), a silver precursor, dissolved in supercritical carbon dioxide and were examined by optical absorption spectroscopy, atomic force microscopy, and electron spin-resonance spectroscopy. It was demonstrated that the absorption spectra of Vycor glass and opal matrices impregnated with Ag(hfac)COD molecules and subjected to thermal treatment in air at temperatures above 50°C exhibit plasmon resonances characteristic of Ag nanoparticles at 420–430 nm. The peculiarities of the plasmon resonance band for both types of samples were attributed to the morphology of the pore space in which silver particles are formed. Paramagnetic Cu(hfac)2 molecules (copper hexafluoroacetylacetonate) were used as a spectroscopic probe for estimating the distribution of the precursor in the pores of Vycor glass and opal matrices during supercritical fluid impregnation.  相似文献   

7.

The thermal expansion and the heat capacity of coarse-crystalline and nanocrystalline silver sulfide Ag2S were studied by dilatometry and differential scanning calorimentry for the first time in the temperature range 290–970 K. It is found that the thermal expansion coefficient and the heat capacity of nanocrystalline silver sulfide in this temperature range are higher than those in the case of the coarse-crystalline sulfide. It is revealed that the transformation of α-Ag2S acanthite to β-Ag2S argentite and β-Ag2S argentite to γ-Ag2S phase are the first-order phase transitions; the temperatures and the enthalpies of these transformations have been determined.

  相似文献   

8.
The optical properties of nanocomposites of metal nanoparticles and polymers of two types have been studied. Gold and silver nanoparticles were obtained by laser ablation of corresponding metal targets in acetone and chloroform. The thus formed colloidal solutions were used to prepare nanocomposites of these nanoparticles in polymer matrices of polymethylmethacrylate (PMMA) and fluorine-containing polymer LF-32. The polymer matrix is found to promote aggregation of the metal nanoparticles under study into elongated chains. In turn, metal nanoparticles affect the polymer matrix. In the case of PMMA, suppression of the vibrational peaks of polymer in the low-frequency region of its Raman spectrum occurs. In the case of LF-32, gold and silver nanoparticles amplify the Raman signal of the polymer matrix. In addition, the Raman spectra of nanocomposites indicate aggregation of disordered carbon around the nanoparticles obtained by laser ablation in organic solvents. The possibilities of studying the ultrafast (about 1 ps) optical response of the nanocomposites obtained in order to use it in photonics elements are discussed.  相似文献   

9.
The solgel process has been successfully used to prepare silver/silica nanocomposites. After drying in air at 50°C for 30 min, samples were heat treated in air, at 100, 200, 400 and 500°C for the formation of silver nanoparticles. Evolution of silver nano-particles in the amorphous SiO2 matrix as a function of annealing temperature has been studied. Characterizations were made by X-ray diffraction, ultraviolet-visible, and infrared spectroscopy. Mechanisms of silver clusters formation in the densified silica matrix with respect to thermal treatment are discussed.  相似文献   

10.
Silver/polyacrylonitrile (Ag/PAN) nanocomposites are synthesized at the stage of simultaneous acrylonitrile polymerization and the reduction of silver ions from a mixture of silver nitrate AgNO3, acrylonitrile, and a photoinitiator. The synthesized films are transparent in the visible region and are characterized by a uniform dispersion of silver nanoparticles in a PAN matrix without any macroscopic agglomeration. The effects of the metal salt and photoinitiator concentrations on the size and density of metal nanoparticles in a composite are revealed.  相似文献   

11.
TiO2 nanowires were grown on titanium foil by an alkali hydrothermal growth method. The as-synthesized nanowires are structurally uniform with diameters of 50-100 nm and lengths of up to a few micrometers. The as-prepared TiO2 nanowires were coated with Ag nanoparticles by reducing AgNO3 in solution. The experimental results indicate that the Ag nanoparticles can aggregate together on the surfaces of TiO2 nanowires by interconnection between nanoparticles. The degree of aggregation of Ag nanostructures can be controlled by changing the concentrations of Ag nanoparticles. The as-prepared nanostructures exhibit a wide optical absorption from 387 to 580 nm that can be easily tuned by controlling the degree of aggregation of Ag nanostructures. The results reveal that optical properties of the Ag-coated TiO2 nanowires can be enhanced by plasmon coupling of Ag nanoparticles. The as-prepared nanostructures may find potential applications in the field of solar cells.  相似文献   

12.
The optical properties of mixed (Ni0.5Ag0.5)n and Pt/Ag clusters are investigated in the size range 2-5 nm. Low Energy Ion Spectroscopy (LEIS) experiments show that the cluster surface is entirely covered by silver atoms for the two systems. The optical spectra of Ni/Ag clusters exhibit a large Surface Plasmon Resonance (SPR), damped and widened when the cluster size decreases, in agreement with a classical model assuming a core-shell geometry and including the reduction of the conduction electron mean-free path in the silver shell. For Pt/Ag clusters, no SPR emerges in the size range 2-5 nm, although it is predicted within a classical model, a pronounced SPR appearing only for clusters larger than 10 nm in diameter.  相似文献   

13.
通过生物矿化合成了聚氨酯/Ag2S纳米复合薄膜.通过傅里叶变换红外光谱研究、扫描量热法(DSC)、扫描电镜等方法研究了硫化银纳米粒子对复合薄膜物理性质的影响.用DSC 测定了复合材料的热 稳定性.通过对纳米复合材料荧光性能的研究发现薄膜对Ni(II)的存在非常敏感,少量Ni(II)离子的存在使得荧光光谱强度迅速增加.可以预测此复合薄膜可被开发成水溶液中Ni(II)的传感器.  相似文献   

14.
Spherical silver nanoparticles were grown in situ in different polyamides by a thermal reduction of silver acetate during melt processing of the polymers. Most of the particles have a diameter of about 20 nm. The absolute amount as well as the kinetics of the silver ion release from the various polyamide/silver nanocomposites differ strongly, although the filler content in all materials is the same (1.5 wt. %) and the morphologies of the silver particles are not very different. One result of the investigations was that the absolute amount of the long-term silver ion release increases exponentially with the maximum water absorption of the polymers used as matrix materials, because silver ions are formed from elemental silver particles in the presence of water, only. Moreover, it was also found that the long-term silver ion release increases with a growing diffusion coefficient of water in the polymer. The water absorption properties of the polymers govern the kinetics of the silver ion release, too: for strong hydrophilic polyamides like PA6 or PA6.6, which are plasticized by water, the silver ion release is a zero-order process. For nanocomposites with less hydrophilic polyamides like a cycloaliphatic polyamide or a P12 modified with polytetrahydrofurane (PA12-poly-THF), the silver ion release is governed by diffusion. As expected from the efficacy of the silver ion release, PA6, PA6.6, PA12 and PA12 modified with polytetrahydrofurane and a cycloaliphatic polyamide filled with 1.5 wt. % of silver nanoparticles are active against Escherichia coli. But, only nanocomposites with PA6, PA6.6 and P12-poly-THF as matrix materials are suitable as long-term biocidal materials. PACS 68.35.bm; 68.35.Fx; 68.37.Lp  相似文献   

15.
In this article, ZnS nanoparticles were prepared by wet chemical precipitation method using zinc sulphate (ZnSO4), sodium sulphide (Na2S) and thio-glycerol. These nanoparticles were characterized through X-ray diffraction (XRD) and transmission electron microscope (TEM) measurements. The solution-based processing was used to prepare Poly methyl methacrylate (PMMA) nanocomposites with different weight percents (0, 2, 4, 6 and 8) of ZnS nanoparticles. The obtained ZnS/PMMA nanocomposites were characterized through XRD, scanning electron microscope and TEM measurements. The dynamic mechanical analyzer was used to obtain the storage modulus and glass transition temperature (T g) of the nanocomposites. The apparent activation energy of the glass transition region was also determined using the Vogel–Fulcher–Tammann equation. The results indicated that the thermal stability of ZnS/PMMA nanocomposites was higher than PMMA and 6 wt. % of ZnS nanoparticles in PMMA matrix showed the maximum activation energy, which indicated that this nanocomposite had higher thermal stability than other composites.  相似文献   

16.
利用1,3-偶极环加成反应合成了联吡啶基C60单加成衍生物N-甲基-2-[4′-(4″-甲基-2′,2″-联吡啶基)]-3,4-C60吡咯烷(C60BPY),并用NaBH4还原法和银溶胶直接组装法制备了C60BPY/Ag复合纳米结构。透射电子显微镜(TEM)表明,两种复合纳米结构的粒子粒径分别在30~45nm和40~55nm之间,粒子形状较规则,且分散性较好。在复合纳米结构形成过程中,C60BPY分子有效地控制了银粒子的生长和团聚,起到了很好的稳定和分散作用。紫外-可见吸收光谱中,两种复合纳米结构分别在430和490nm处出现了银纳米粒子的表面等离子体共振吸收峰,说明随着粒径的增大,吸收峰发生了红移。荧光发射光谱显示,C60BPY/Ag复合纳米体系猝灭了C60BPY在720和805nm处的发射峰,并对其机理进行了探讨。这种复合纳米体系有望在光电器件、传感器及催化领域有潜在的应用前景。  相似文献   

17.
The effect of silver on the optical, spectral-luminescent, and crystallization properties of bromide photo-thermo-refractive glasses is studied. Multicomponent photosensitive glasses of the Na2O–ZnO–Al2O3–SiO2 system with photosensitizing agents (cerium, antimony, silver) and halogenides (fluorine and bromine) are synthesized. Ultraviolet irradiation and thermal treatment below the glass-transition temperature of the glasses cause the formation of silver molecular clusters, which exhibit luminescence in the visible and infrared regions. UV irradiation and thermal treatment of glasses above the glass-transition temperature lead to the growth of silver nanoparticles with plasmon resonance peak in the region of 420 nm. Further thermal treatment of glasses above the glass-transition temperature shifts the plasmon-resonance maximum by 70 nm to longer wavelengths, which is related to the growth of a crystalline shell consisting of mixed silver and sodium bromides on nanoparticles. This formation of a crystalline phase on colloidal centers results in a local increase in the refractive index of the irradiated region by +Δn ~ 900 ppm compared to the nonirradiated region. Photo-thermo-refractive glasses with increased silver concentration are promising photosensitive materials for creating holographic optical elements and devices for line narrowing and stabilizing filters, spectral beam combiners, and filters for increasing the spectral brightness of laser diodes. A positive change in the refractive index of Photo-thermo-refractive glasses provides the possibility of recording in them 3D waveguide and integrated-optical structures.  相似文献   

18.
Conducting polymer composites of polypyrrole (PPy) and silver doped nickel oxide (Ag-NiO) nanocomposites were synthesised by in situ polymerisation of pyrrole with different contents of Ag-NiO nanoparticles. The formation of nanocomposites were studied by Fourier transform infrared (FTIR) and UV–vis spectroscopy, field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and AC and DC conductivity measurements. The sensitivity of ammonia gas through the nanocomposite was analysed with respect to different contents of nanoparticles. Spectroscopic studies showed the shift in the absorption bands of polymer nanocomposite than that of pure PPy indicating the strong interaction between the nanoparticles and polymer chain. FESEM revealed the uniform dispersion of nanoparticles with spherically shaped metal oxide particles in PPy matrix. The XRD pattern indicated a decrease in amorphous domain of PPy with increase in loading of nanoparticles. The higher thermal stability and glass transition temperature of polymer nanocomposites than that of pure PPy were revealed from the TGA and DSC respectively. The dielectric properties, DC and AC conductivity of nanocomposites were much higher than PPy and these electrical properties increases with the loading of nanoparticles. The nanocomposites showed an enhancement in sensitivity towards ammonia gas detection than PPy.  相似文献   

19.
This work evaluates the dosimetric properties of crystals of CaSO4 doped with unusual elements, such as europium (Eu) and silver (Ag), including their nanoparticle forms, after the incorporation of glass or Teflon and compares them with well-known thermoluminescent dosimeters (TLD). X-ray diffraction analyses showed that samples of doped CaSO4 exhibit only a single phase corresponding to the crystal structure of anhydrite. Optical spectroscopy confirmed the presence of Eu3+ in the crystal matrix and a luminescent gain due the presence of silver nanoparticles. The composites showed thermoluminescent emission glow curves, with a single peak centered at approximately 200 °C for pellets with Teflon and at 230 °C for pellets with glass. The dosimeters based on calcium sulfate doped with europium and silver nanoparticles provided the most intense thermoluminescent (TL) emission of the composites studied. In comparison with commercial TLD, such as LiF:Mg,Ti and CaSO4:Dy, the CaSO4:Eu,Ag(NP)+glass produced in this work presented similar low detection limits and higher sensitivity. The new methods for the preparation of dosimeters and the incorporation of glass are shown to be viable because all of the samples presented a linear, reproducible and first order kinetic TL emission.  相似文献   

20.
The structures consisting of silver nanoparticles and polyacrylonitrile (PAN) are synthesized by the photopolymerization method yielding a homogeneous dispersion and a small size spread of nanoinclusions in PAN matrices, which is observed in images of transmission electron microscopy. The optical properties of the nanocomposites are studied to depend upon conditions of their obtaining. The minimum in the transmission spectra in a wavelength region of 430 nm, which is attributed to the surface plasmon resonance of silver nanoparticles, is found. The absorption peaks in the infrared range are observed at ∼820 and ∼1110 cm−1 for the silver nitrate (AgNO3) and the photoinitiator, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号