首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
星载超光谱成像仪杂散光及其测量   总被引:1,自引:0,他引:1  
超光谱成像仪比一般光谱仪器具有更多的光谱通道和更高的光谱分辨率,而杂散光是影响超光谱成像仪光谱测节精度的重要因素之一,当前光谱仪器的杂散光测量方法尚不能满足超光谱成像仪杂散光检测的需要.作者探讨了此类成像光谱仪杂散光的定义、来源和危害,论述了使用杂散光影响因子di,j描述光谱仪杂散光的可行性和优越性,并给出了杂散光受扰系数fi(λ)和杂散光干扰系数Fi(λ)的定义、物理意义和工程应用价值.最后,介绍了使用窄带滤光片测量星载超光谱成像仪杂散光的测量系统组成、测量步骤和测量结果.结果表明:杂散光影响因子di,j能正确表示光谱仪的杂散光特性,与光源、滤光片、探测器等测量条件无关,而测量效率比谱杂散光系数法至少提高1倍,满足星载超光谱成像仪杂散光测量的工程需要.  相似文献   

2.
光谱仪的杂散光和带宽是LED光谱测量中比较重要的两个误差影响因素,为了得到更精确的测量结果,必须对杂散光和带宽影响进行校正.用He-Ne激光测出光谱仪的线扩展函数,在假设光谱仪是线性波长不变系统的前提下,构建杂散光分布函数矩阵,转化为杂散光校正矩阵,从而对所测信号进行杂散光校正;在三个波段内分别由光谱仪带宽函数计算带宽校正系数,将被测波长点及其邻近带宽波长点上的测量结果进行加权平均,从而得到带宽校正结果.将两种校正方法应用在一台多通道快速光谱仪上,测量各种颜色的LED,实验结果表明能有效地校正杂散光和带宽影响,色品坐标最大校正了(-0.003,0.007).且该方法降低了应用成本,在保证精度的情况下简化了计算量,使得校正更易于实施.  相似文献   

3.
本文阐明了一台原子吸收光谱仪的信号同步对仪器性能有显著的影响,灯的快速脉冲导致更精确的背景校正和更精确的发射校正,双光束的不平衡调使用噪音更低,这些特点的最显著之处是能够校正背景吸收中的快速变化。而该变化是石墨原子吸收中背景校正误差最基本的来源。  相似文献   

4.
一、紫外和可见光波段的光谱 仪杂散光的测量 光谱仪是进行光谱分析的重要工具.此外,还可以利用光谱仪输出的单色光进行其他工作,例如反射率和透过率的测定等.但是当光谱仪用于定量测量时,会遇到光谱仪的杂散光问题.光谱仪的杂散光就是光谱仪输出的、正常通带以外的光辐射.由于光谱仪存在这部分杂散光辐射,因此给测量带来了误差.目前人们对紫外和可见波段的光谱仪杂散光的测量已经作了一些工作.测量方法归纳起来主要有:(1)测量截止滤光片透过率的方法[1];(2)级数透过率方法[2];(3)光学方法[3];(4)卷积计算的方法[4].现分别介绍如下:1.测量截…  相似文献   

5.
干涉成像光谱仪的杂散光分析   总被引:4,自引:2,他引:2  
杂散光对光学系统的成像质量有严重的影响。从杂散光的定义出发,分析杂散光的来源,建立评价杂散光对系统影响的主要指标和点源透过率、杂散辐射比的数学模型,用TracePro对Fabry-Perot干涉成像光谱仪的杂散光进行分析和计算,通过在系统中增加遮光光栏能有效抑制系统中的杂散光,有效降低杂散辐射比。采用分析结果对Fabry-Perot干涉成像光谱仪的光机系统进行消除杂散光设计。  相似文献   

6.
要使背景得到完全的校正,必须使原子吸收测量和背景测量在同一波长进行,必须使这两个测量具有相同的测量时间和空间。由于测量时间差引起的误差可以表述为: ΔA_B=M_(αx)[dA_B(t)/dt]Δt (1) 其中A_B(t)是原子化周期背景吸收信号对时间的函Δ数,t是采样时间差。由于光束不重合也会造成测量误差,以氘灯背景校正器为例:如果σ和θ′分别为HCL和D_2灯的像斑面积,K_B′和K_B分別为σ和σ′面积上的背景吸收系数,K_B=K_B′(1+α),背景校正的误差可以表达为: 由于背景吸收,光源辐射衰减,背景校正系统的光子噪声可表达为等式(3)可以看出背景校正的误差随背景吸收系数K_B指数上升。在光子噪声为背景校正系统限定影响时,背景校正能力可以写成为等式(4)表明当K_B=0.86A时,背景校正能力有一个极大值F_(max)=0.245I_0~(1/2)。这些讨论与我们的实验结果能很好地吻合。  相似文献   

7.
杂散光分析已经成为光学系统设计中必须考虑的关键因素之一。基于蒙特卡洛法,利用TracePro软件进行建模仿真,对多目标复合半实物仿真系统的杂散光进行了分析。仿真结果表明仿真系统的杂散光主要来自两方面:一是扩束光束经主反射镜边缘反射的未复合光束;另一个是由于仿真系统关键元件自发辐射产生的杂散光。根据杂散光系数和元件制冷温度的关系得出:当制冷温度为200 K时,仿真系统的杂散光系数小于2%。分析结果对导弹的多目标复合半实物仿真系统的设计具有重要的指导意义。  相似文献   

8.
基于高阶统计特征的FY-2气象卫星全视场杂散光估计   总被引:2,自引:0,他引:2  
郭强  许健民  张文建 《光学技术》2004,30(6):748-752
在分析FY 2VISSR杂散光成因的基础上,对其中的主要部分,即折镜直接反射形成杂散光的物理过程进行了建模。提取了特定区域目标的高阶统计特征,通过对地球圆盘外区域杂散光特征的学习,得出了系统杂散光作用矩阵A的总体最小二乘解,并将其推广到地球圆盘区域内,得到了在该模型下对全视场杂散光的有效估计。分析结果表明:对于红外和水汽通道而言,地球圆盘区域外的杂散光反演误差均值小于1bit,可见光通道反演出的杂散光日变化相对稳定,且各通道去除杂散光后图像的目视效果有了很大的改观。该估计方法有望在近期进入FY 2B及其后续卫星的业务运行中。  相似文献   

9.
宋延松  杨建峰  李福  马小龙  王红 《物理学报》2017,66(19):194201-194201
光学表面加工误差引起的散射是影响光学系统成像性能的重要因素.描述表面总散射能量的均方根粗糙度是评定光学表面粗糙度的通用指标,但因其未能体现散射能量的空间分布,在表征光学表面散射对具体光学系统杂散光性能影响时存在准确度不足的局限.本文基于全积分散射及双向散射分布函数理论,针对杂散光抑制要求提出一种光学表面粗糙度控制的新方法.首先通过分析确定光学表面纹理中影响系统杂散光的空间频率范围,然后度量该频率带限范围内的表面均方根粗糙度,作为控制光学表面粗糙度的指标.以太阳磁场望远镜(MFT)为例进行方法验证,确定主镜表面纹理有效频率范围为0—18 mm~(-1),分析了主镜表面带限均方根粗糙度对MFT杂散光性能的影响.结果表明,带限均方根粗糙度与MFT杂散光性能之间的关系稳定性能大幅提高,由此验证了采用带限均方根粗糙度描述光学表面粗糙度,能更为准确地控制其对具体光学系统杂散光性能的影响.  相似文献   

10.
采用Kirk测量法的杂散光模型研究了杂散光在不同线宽结构上杂散光的光强变化,通过图像对比度分析了杂散光对不同线宽结构的影响。基于Matlab软件仿真分析表明:线宽一定时,线条越稀疏,图像对比度越低,杂散光对成像图形分辨力的影响越大;线条线间比一定时,线宽尺寸越小,图像对比度越低,杂散光对成像图形分辨力的影响也越大。所以杂散光对线宽较小并且线条稀疏空间结构所成的图形造成的影响较大。光刻; Kirk测量法; 杂散光; 点扩散函数; 图像对比度  相似文献   

11.
应对气候变化预测与灾害天气防范等科学难题,空间观测领域提出高精度的光谱辐射度定标需求。阵列式光谱辐射计存在内部结构缺陷和光学元器件不理想等问题,导致杂散辐射,严重影响光谱辐射度测量结果的准确性。测量多种典型阵列式光谱辐射计的杂散辐射特性,考虑外场目标光源与实验室定标光源不一致对杂散辐射修正的影响,分别基于带通滤光片和可调谐激光器研究紫外杂散辐射修正方法。首先,利用不同光谱透过率的带通滤光片,测量可见及红外光谱辐射引起的紫外杂散信号。针对杂散辐射分布特点,建立数学修正模型,实现高效快捷的杂散辐射修正。地基验证场的光谱辐射亮度测量结果修正后,紫外杂散辐射信号显著降低。对于连续分布的宽谱段光源,带通滤光片修正法具有实验简便易行、测试过程高效等优点。然而,实现非连续分布或窄带光源的高精度杂散辐射修正存在困难。为此,建立基于可调谐激光器的杂散辐射测量系统,解决了各个像素点杂散辐射线扩展函数的测量难题。改变可调谐激光器的输出波长,精细化测量各个像素点的杂散辐射线扩展函数,再推导出杂散辐射信号分布函数,通过MATLAB软件将矩阵反演运算,得到各像素点的杂散辐射修正结果,实现杂散辐射的高精度修正。利用不同类型的阵列式光谱辐射计验证了该修正方法,对于非连续分布的窄带光源,测量结果修正后杂散辐射信号降低了一个数量级,并且谱线两边的杂散宽峰显著消除,大幅降低了紫外波段的测量偏差。针对不同光谱分布的光源,建立了两种优势互补的杂散辐射修正方法,有效改善了阵列式光谱辐射计的紫外测量结果偏差,进一步确保我国地球观测数据的准确性和国际等效互认。  相似文献   

12.
近红外光谱无创血糖测量中背景扣除方法的研究   总被引:5,自引:2,他引:3  
在近红外光谱人体血糖无创检测中,由于葡萄糖在体内含量非常低,而光谱中的噪声组成复杂且变化幅度大,从而导致测量的信噪比较低。背景扣除是提高测量信噪比的有效预处理手段之一。文章首先对常用的背景扣除方法进行了理论推导,并进一步考虑不同样品在测量过程中存在的样品本身特性变化,提出了相近背景扣除的方法,即选择与样品的光学特性变化相似的样品作为背景,能更有效地消除样品特性变化和仪器漂移的影响。并在纯吸收和散射介质中分别加入葡萄糖进行实验验证。结果表明,在血浆溶液和Intralipid-2%溶液的葡萄糖实验中,选用与样品特性更接近的样品作为背景时,葡萄糖浓度的预测精度分别提高了25.9%和40.1%。  相似文献   

13.
星载成像光谱仪用于获得高准确度的光谱遥感数据,而杂散光是影响其光谱测量准确度的重要因素之一.介绍了此类成像光谱仪杂散光的定义、来源和危害,在比较截止滤光片法、光谱法、谱杂散光系数法等光谱仪器常用杂散光测量方法优缺点的基础上,论述了使用杂散光影响因子描述光谱仪杂散光的可行性和优越性.最后,介绍了使用窄带滤光片测量星载成像光谱仪杂散光影响因子的测量系统组成、测量步骤和测量结果,并分析了测量方法的不确定度.结果表明:杂散光影响因子能有效描述光谱仪的杂散光特性,测量结果与光源、探测器等测量条件无关;窄带滤光片法测量不确定度为0.646%(置信概率约为95%),能满足星载成像光谱仪杂散光测量的工程需要.  相似文献   

14.
针对一种折反式光学系统相机遇到的消杂光问题,根据杂光计算结果对相机进行了消杂光设计,通过试验对杂光计算结果进行了验证,试验结果与计算结果吻合,验证了消杂光设计的正确性。进行消杂光设计后,相机的杂光系数满足设计指标要求,有效地减小了杂光对图像质量的影响。  相似文献   

15.
王洁  王立强  石岩  郑华  陆祖康 《光子学报》2008,37(2):360-363
建立了激光诱导荧光检测系统.采用光学仿真方法,建立与实际光学系统相同的模型.模拟表明:聚焦光束扫描毛细管阵列,轴上光束入射到毛细管内径中心时产生的杂散光最大,在两边逐渐减小.由毛细管产生的杂散光的平均光强是无毛细管时的2.725倍,说明由它产生的杂散光比较严重.对不同大小的内径产生的杂散光影响进行了分析比较,增大毛细管的内径,杂散光增大,但毛细管内径减小会使进样量少,检测困难,同时还会加大清洗与灌胶的难度.综合考虑,选取内径为50 μm的毛细管较为合适.利用自行设计的激光诱导荧光检测系统扫描毛细管阵列,进行了杂散光检测实验,光电倍增管记录所收集到的信号,作出了激光束扫描毛细管的不同位置时的杂散光信号强度分布图,实验与模拟结果相一致.  相似文献   

16.
作为一个微弱光信号探测系统,拉曼光谱仪中的杂散光分析可以为其设计提供较大帮助。针对微型拉曼光谱仪系统,结合光学设计和三维建模优化了其光机结构,系统分辨率为0.7 nm,体积为110 mm×95 mm,属便携式微型拉曼光谱仪,并基于杂散光分析软件TracePro对系统进行了光线追迹和仿真分析。首先通过优化孔径光阑初步抑制了入射处带来的杂散光,然后针对系统内部的主要杂散光(光栅零级衍射光)抑制装置即光学陷阱进行了详细分析和设计改进,改进后的光学陷阱较改进前更有效地利用了光谱仪内部空间,且分析结果表明改进后的光学陷阱将杂散光线数量减少了50%,杂散光归一化辐照度强度从10-5降低至10-7,在微型化的同时可有效抑制微型拉曼光谱仪系统中的杂散光,将更加有利于微弱信号的探测,为微型拉曼光谱仪的设计和装调提供了参考。  相似文献   

17.
提出了一种侧面遮拦结构的日晕光度计,在镜筒内通过设置多层挡板结构逐层抑制处于内视场的挡板边缘衍射光,同时采用倾斜布置的上挡板结构抑制处于外视场的入射窗口边缘衍射光和侧壁散射光.建立数学模型对这些杂散光抑制挡板进行了仿真计算,结果表明,优化各挡板的几何参数后,日晕光度计的设计视场可达3.5~10个太阳半径,视场内的杂散光水平均可低于10-8平均太阳亮度.相对于高山天文台的日晕光度计在4~8个太阳半径的视场内总杂散光达到10-2平均太阳亮度,该日晕光度计扩展了可观测视场,并使杂散光抑制提高了一个量级.  相似文献   

18.
陈学  孙创  夏新林 《计算物理》2012,29(6):876-880
针对蒙特卡罗法运算量大的问题,通过引入区域分解和逐级光线分裂技术,减少杂散光线与表面交点求解时所涉及的表面数及跟踪光线数,降低计算量.区域分解时,考虑子区域与表面数的匹配关系;并基于杂散光传播过程的模拟信息,逐级确定光线分裂倍数.以大衰减比抑制结构和多传感器系统为例,进行杂散光分析.结果表明,对复杂系统杂散光传播的蒙特卡罗法模拟,应用区域分解和逐级光线分裂技术,可以在保持计算精度的前提下,有效地提高计算效率.  相似文献   

19.
以卡塞格伦结构为例,利用ASAP光学分析软件,建立了红外光学系统的三维仿真模型,在光学元件表面存在均匀分布和非均匀分布的微粒污染情况下,对红外光学系统的杂散辐射特性进行了仿真和比较分析,对影响系统杂散辐射特性的主要因素进行了讨论,并对系统中机械元件的杂散辐射路径进行了分析。在此基础上,采用有效发射率对系统的杂散辐射性能进行了评价,讨论了镜面污染程度对红外光学系统杂散辐射性能的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号