首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
星载宽波段远紫外高光谱成像仪光学系统设计   总被引:4,自引:3,他引:1  
薛庆生 《光学学报》2013,33(3):322001
根据高层大气遥感的应用要求,设计了一个全反射式的远紫外高光谱成像仪光学系统,该系统由扫描镜、离轴抛物面望远镜和超环面光栅光谱仪组成。提出了一种凹面超环面光栅光谱仪像差校正方法,根据凹面光栅的几何像差理论求解初始结构参数,然后利用光学设计软件Zemax进行优化,完成了超环面光栅光谱仪的设计,在工作波段内,点列图半径的方均根均小于16 μm,实现了宽波段像差同时校正,满足光谱分辨率0.6 nm的指标要求,也证明了提出的像差校正方法是可行的。运用光学设计软件Zemax对远紫外高光谱成像仪光学系统进行了光线追迹,并对设计结果进行了分析,分析结果表明,各波长的光学传递函数均达到0.8以上,完全满足设计指标要求,且结构紧凑,适合空间遥感应用。  相似文献   

2.
液晶自适应光学的研究进展   总被引:1,自引:0,他引:1  
概述了中科院长春光学精密机械与物理研究所(长春光机所)在液晶自适应光学方面的研究进展。针对液晶自适应光学技术存在的能量利用率低和校正频率慢的两大国际难题,液晶自适应光学研究组采取了一系列有效措施,不但攻克了能量利用率低的难题,且在校正频率方面也取得了质的飞跃。目前,系统能量利用率已从最初的5%提高到85%,基本和变形镜自适应光学系统的能量利用率相当;校正频率也从5 Hz提高到140 Hz,接近了校正大气湍流的实用化水平。利用该研究成果,分别研制了针对中科院国家天文台2.16 m望远镜和长春光机所1.2 m望远镜的液晶自适应光学系统并对恒星进行了有效校正,使1.2 m望远镜对恒星的分辨能力提高至约3倍衍射极限。  相似文献   

3.
利用光学设计软件Zemax设计了一套具有6×,10×,16×,25×与40×放大倍率的五档式数码裂隙灯显微镜光学系统.在传统体视裂隙灯显微镜光学系统结构的基础上将数码型裂隙灯显微镜划分为共用前置物镜、伽利略望远镜、摄影物镜三部分,用平行式伽利略望远镜系统结构来改变倍率.研究了共用前置物镜、伽利略望远镜及摄影物镜的光学特性与技术指标要求,选取了合适的透镜类型.在共轴时拥有良好的成像质量基础下,将光学系统过渡到非共轴情况,再进行优化.优化后除40×时衍射极限较低外,在6×,10×,16×,25×情况下系统调制传递函数曲线值在空间频率为115lp/mm处基本大于0.2,点列图显示不同倍率下的弥散斑大小均基本小于艾里斑.该光学系统具有良好的成像效果,且整体结构简单,易加工,成本低,其性能很好地满足了整机要求.  相似文献   

4.
设计了一个大扫描视场的折衍混合红外共形光学系统,共形成像系统工作波段为3.7~4.8 m,相对孔径为1/2,焦距为120 mm,扫描视场为40。由于共形光学系统具有大偏心、大倾斜光学特性,像差校正难度较大,设计中采用固定校正镜和折衍混合混合结构校正了共形光学元件的像差,引入了非球面和衍射面有效消除了各个扫描视场的像差。设计结果表明:光学系统光阑与探测器冷光阑重合,满足100%冷光阑效率。在40扫描视场范围内,共形光学系统的光学传递函数曲线接近衍射极限,成像良好。  相似文献   

5.
曹一青 《应用光学》2021,42(4):608-613
折反射全景光学成像系统具有平面对称光学系统的成像特性,提出应用光焦度控制方程和超大视场光学系统六阶波像差理论来初步确定系统结构初始参数,在此结构基础上,应用Zemax软件对其进行设计和优化,得到了一款仅由1块偶次非球面反射镜和6块折射透镜组成的折反射全景光学成像系统。该系统工作在可见光波段,全视场角范围为12°~178°,F数为3.5,其像差得到了较理想校正,调制传递函数在空间频率40 lp/mm处均大于0.37,成像性能较好,满足实际应用要求。同时,对设计的系统进行了公差分析。  相似文献   

6.
董云芬  王波  张盈盈  宫萌  王斌 《应用光学》2020,41(2):265-269
大视场、低成本、高性能天文望远镜是当前研究和开发的热点。基于像差平衡原理,在正入射施密特矫正板基础上推导出斜入射反射式施密特矫正板方程,针对焦距1 700 mm,成像视场角4°,波段为0.4 μm~0.9 μm,F数为4.25的光学系统,求解出施密特矫正板方程,并作为初始结构参数代入Zemax软件进一步优化。设计结果表明,在全视场范围内,该系统在奈奎斯特频率100 lp/mm处的调制传递函数MTF大于0.35,畸变小于2.5%,成像质量达到了衍射极限。优化设计后施密特矫正板与最近球面最大偏差为0.005 mm,采用特制的补偿器结合干涉仪可完成面形高精度检测。该施密特系统的设计为大视场、宽波段天文望远镜的开发提供了参考。  相似文献   

7.
大孔径红外光学系统往往易受自重和环境温度影响造成像质恶化,引入自适应光学技术的红外自适应系统能够很好地解决该问题,为此设计了一个用于Hartmann-Shack波前检测的红外自适应光学系统。重点设计了10×可见光与中波红外双波段望远镜,物镜为卡赛格林反射物镜组,无需消色差,在可见光与中波红外2个波段实现了消色差目镜设计;还设计了红外成像中继光学系统,可实现100%冷光阑效率,并补偿望远镜在中波红外波段的残余像差,使最终设计的光学系统MTF接近衍射极限,达到了0.5以上,满足设计指标要求。  相似文献   

8.
通过对Zemax动态数据交换技术DDE(Dynamic Data Exchange)通信接口进行研究,实现了ANSYS-中继软件-Zemax的DDE闭环通信,并应用到了望远镜光学系统受环境温度场影响的光学像质评估中,实现了有限元分析和光学像质评价的动态联合。用ANSYS建立有限元模型,分析由温度场引起的光学镜面形变。通过Zernike多项式拟合,将拟合系数通过ANSYS-Zemax的DDE通信链路传递给Zemax进行光学系统的像质分析。反之,像质分析的结果也可以动态地传递给ANSYS,以便进一步指导机械结构的优化设计。此有限元系统-光学系统通信链路的实现可大大提高数据的可靠性和设计效率。  相似文献   

9.
三反射镜空间遥感器的光学设计   总被引:1,自引:0,他引:1  
汪明强  李林  黄一帆 《光学技术》2007,33(2):170-172,176
通过选取三镜消像散(Three-mirror anastigmat,TMA)的结构形式介绍了共轴系统离轴使用的方法。TMA系统由三个二次曲面镜、一个变形镜和一个快速稳像镜构成。根据三镜系统的初级像差理论推导出了系统的初始结构,利用自动光学设计软件Zemax对初始结构进行了像差优化设计。采用两种优化方法来保证系统的出瞳与变形镜重合,以便于校正主镜的剩余误差。所设计出的光学系统的成像质量可接近衍射极限,满足了系统对成像质量的要求。  相似文献   

10.
中波红外制冷型光学系统消热差设计   总被引:2,自引:1,他引:1       下载免费PDF全文
对比了典型消热差方法的优劣,探讨光学被动式消热差的基本理论。在此基础上,根据系统要求的温度范围 60℃~90℃,在常温初始结构的基础上,利用Zemax软件的多重结构和自动热分析功能增加其他温度结构,运用光学被动式消热差方法进行热平衡和像差平衡,最终设计出一套中波制冷型消热差光学系统。光学设计时以探测器冷阑作为系统孔径光阑,实现了100%冷阑匹配。结构材料使用铝,光学材料为硅、锗和硒化锌,将它们组合消热差。系统在-60℃~90℃温度范围内,最大离焦量小于1倍焦深,空间分辨率17 lp/mm处,光学调制传递函数(MTF)值均大于0.74,接近衍射极限,点列图弥散斑均未超出单像元尺寸范围。  相似文献   

11.
张文学  王继红  任戈 《应用光学》2019,40(5):779-785
为实现对望远镜系统中光学元件表面缺陷在线检测,介绍了一种用于光学元件表面缺陷检测的变焦距成像光学系统,采用机械变焦形式实现变焦功能。根据望远镜系统技术要求计算出变焦距系统的关键参数, 通过Zemax软件设计并优化得到最终结果,整个变焦系统的设计实现了90 mm~540 mm的6倍变焦,在变焦过程中F数和像面位置保持不变,变焦系统总长为553.1 mm。从调制传递函数(MTF)、点列图 2个方面分析了系统的成像质量,系统在各焦距处的MTF值在100 lp/mm处均大于0.3,物方分辨率优于0.055 mm,在不同焦距处弥散斑半径均方根值均控制在艾里斑半径范围内。最后对系统环境适应性进行了分析, 讨论了工作温度范围为-10℃~40℃时对系统成像质量的影响,并给出了温度补偿方案。实验结果表明,补偿后的系统成像质量良好,满足实际需求。  相似文献   

12.
杨兰  蔡晓梅  周雄图  郭太良  叶芸 《发光学报》2017,(12):1688-1694
液晶透镜是自由3D显示的新器件,其原理是利用基于向列相液晶指向矢随外加电场作用发生变化的光电特性。本文提出一种简易准确的透镜参数设计和优化方案。以单圆孔结构的液晶透镜为例,利用光学软件ZEMAX和焦距缩放法对圆孔结构的液晶透镜的参数加以设计并优化。分析液晶透镜的像差,评价成像质量。结果表明,优化后的液晶透镜的像差明显减小,3.5°视场下,弥散斑均方根半径RMS值由248.118μm减小到62.192μm,为原来的25.1%;光学调制传递函数MTF值明显改善。最后实验测试验证了液晶透镜阵列的衍射光斑亮度及清晰度均显著提高。  相似文献   

13.
邝健  周金运  郭华 《应用光学》2016,37(1):52-56
针对DMD数字光刻,利用ZEMAX光学设计软件,设计出了一套适用于型号 0.7XGA DMD的10片式光刻投影物镜。该物镜采用非对称性结构,前组为改进的三分离物镜,后组为匹兹伐物镜加平像场镜,分辨率为2 m,近轴放大倍率为-0.15,像方数值孔径NA为0.158,全视场波像差小于/20 ,畸变小于0.014%,焦深为20 m,通过各项评价可知系统已经达到了衍射极限。在对该镜头进行公差分析后,利用Monte Carlo方法,模拟组装加工了100组镜头,得到90%的镜头MTF>0.46,50%的镜头MTF>0.51,证明了这种非对称性结构加工和校装的可能性。  相似文献   

14.
朱晓冬  叶兵  李凯  马伟东 《应用光学》2018,39(3):418-422
根据微型纤维软镜小尺寸、大视场的要求, 分析其设计准则, 采用"负-正"型反远距物镜作为初始结构, 确定其为像方远心光学系统。通过理论计算和Zemax光学仿真软件的不断优化, 最终设计出了一个工作波段在0.48 μm~0.65 μm, 焦距为0.37 mm, 全视场90°, 相对孔径为1:4的微型光纤传像束内窥镜物镜。该物镜由4片透镜组成, 包括1片负透镜、1片正透镜和1片双胶合透镜。设计结果表明:镜头总长3.89 mm, 最大横截面直径0.95 mm, 满足像方远心光学系统的初始设计要求, 在奈奎斯特空间频率77 lp/mm处的调制传递函数(MTF)近似为0.7, 接近衍射极限, 并且具有小尺寸、大视场、像质优良、结构合理、像面光照强度均匀等特点, 符合微型纤维式内窥镜的使用条件。  相似文献   

15.
介绍了一种新型的空间望远镜,通过改变光学系统焦距,可以提高任意感兴趣视场的成像分辨率.光学系统有四个反射镜组成,包括两个静态非球面反射镜和两个面形动态可调非球面反射镜.通过改变两个可变形反射镜的面形,系统焦距可以在399 mm到558 mm范围内进行动态调整.和机械式变焦系统相比,此主动变焦系统避免了光学元件的精密移动...  相似文献   

16.
雷亮  李浪林  袁炜  刘新  周金运 《应用光学》2014,35(2):311-315
 采用Zemax软件设计出6镜片、数值孔径为0.06、2倍缩小、以405 nm半导体激光器为光源、分辨精度达5 μm、视场12 mm×12 mm 内波像差小于1/4波长、畸变小于0.005%的双远心投影光刻物镜的设计方法。将设计的物镜实物化,并对其光学传递函数(MTF)作精确的实验测定,利用所提出的MTF标准实验测量法,得到该投影物镜的成像性能达亚10 μm线宽。  相似文献   

17.
为满足航天应用中仪器小型和轻量化、大视场的观测要求,通过分析现有Offner成像光谱仪,给出了一种简单的采用凸面光栅设计成像光谱仪的方法。并据此方法设计了一应用于400 km高度,波段范围为0.4~1 μm,焦距为720 mm,F数为5,全视场大小为4.3°的分视场成像光谱仪系统。分视场采用光纤将望远系统的细长像面连接到光谱仪的三个不同狭缝而实现。三狭缝光谱面共用一个像元数为1 024×1 024,像元大小18 μm×18 μm的CCD探测器。通过ZEMAX软件优化和公差分析后,系统在28 lp·mm-1处MTF优于0.62,光谱分辨率优于5 nm,地面分辨率小于10 m,能很好的满足大视场应用要求,该光学系统刈幅宽度相当于国内已研制成功的同类最好仪器的三倍。  相似文献   

18.
针对空间标准动态目标发生器的设计指标要求,对卡塞格林R C系统进行了改进,通过在第2镜和像面之间加入一片双曲面镜,设计完成了焦距为1 600 mm、相对孔径为1∶1.2、视场角为1°、工作波段在0.4 μm~0.7 μm和8 μm~12 μm的共轴三反射光学系统。设计结果表明:该系统弥散斑RMS小于5 μm,在可见光波段与远红外波段相应的空间频率处,此共轴三反系统的调制传递函数值均大于0.7,接近衍射极限,满足系统对成像质量的要求。  相似文献   

19.
大变倍比中波红外变焦系统的小型化设计   总被引:1,自引:0,他引:1       下载免费PDF全文
李岩  张葆  洪永丰 《应用光学》2013,34(2):215-219
基于中波红外320240制冷型探测器,采用机械正组补偿方式,引入衍射光学元件(DOE),并采用折叠光路,实现大变倍比中波红外变焦光学系统的小型化设计。利用变焦原理和Zemax光学设计软件给出系统结构参数,并对设计结果进行像质评价,对凸轮曲线求解等。设计与分析结果表明:系统使用6片透镜在3.7 m~4.8 m波段实现了18 mm~360 mm连续变焦,满足100 %冷光阑匹配,在空间频率16 lp/mm处MTF值均大于0.5。该系统具有大变倍比、变焦轨迹平滑等特点,可应用于机载光电侦察设备中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号