首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
赵伟  俞重远  刘玉敏 《中国物理 B》2010,19(6):67302-067302
Piezoelectric effects and electronic structures of InAs/GaAs quantum dots grown along (111) and (011) directions are investigated in this paper. The finite element method is used. Electronic energy levels are calculated by solving the three-dimensional effective mass Schr?dinger equation including a strain modified confinement potential and piezoelectric effects. The difference in electronic structure between quantum dots grown along the (111) direction and the (011) direction are compared. The cubic and truncated pyramidal shaped quantum dots are adopted.  相似文献   

2.
The strain distribution and electronic structures of the InAs/GaAs quantum ring molecule are calculated via the finite element method.In our model,three identical InAs quantum rings are aligned vertically and embedded in the cubic GaAs barrier.Considering the band edge modification induced by the strain,the electronic ground state and the dependence of ground state energy on geometric parameters of the quantum ring molecule are investigated.The change of localization of the wavefunction resulting from the applied electric field along the growth direction is observed.The ground state energy decreases as the electric field intensity increases in a parabolic-like mode.The electric field changes the monotonic dependence of the energy level on the inter-ring distance into a non-monotonic one.However,the electric field has no effect on the relationships between the energy level and other geometric parameters such as the inner radius and outer radius.  相似文献   

3.
Strained potential profiles and electronic subband energies of InAs/GaAs coupled double quantum dots (DQDs) were calculated by using a three-dimensional finite-difference method (FDM) taking into account shape-based strain and nonparabolic effects. The interband transition energies from the ground electronic subband to the ground heavy-hole band (E1-HH1) in the InAs/GaAs DQDs, as determined from the FDM calculations taking into account strain and nonparabolic effects, were in reasonable agreement with the experimental peaks corresponding to the (E1-HH1) interband transition energies at several temperatures, as determined from the temperature-dependent photoluminescence spectra.  相似文献   

4.
In this work, we investigate theoretically the magnetic susceptibility of the three-dimensional cut-torus-shaped quantum rings. The calculations are carried out for the realistic three-dimensional model of InAs/GaAs nano-rings with the hard-wall confinement potential, three-dimensional effective one-electronic-band Hamiltonian with position and energy-dependent effective mass, and Ben Daniel–Duke boundary conditions. This allows us to describe the penetration of the magnetic field into the torus region. At zero temperature, the ring's differential susceptibility demonstrates delta-like paramagnetic peaks, which are generated by aperiodic oscillations of magnetization. With increasing temperature, the peaks gradually transform into Lorenz-shaped peaks and then disappear. As opposed to meso-scopic quantum rings we found a dependence of the peak's amplitude on the dimensions of the rings.  相似文献   

5.
Strain distribution and optical properties in a self-assembled pyramidal InAs/GaAs quantum dot grown by epitaxy are investigated. A model, based on the theory of linear elasticity, is developed to analyze three-dimensional induced strain field. In the model, the capping material in the heterostructure is omitted during the strain analysis to take into account the sequence of the fabrication process. The mismatch of lattice constants is the driving source of the induced strain and is treated as initial strain in the analysis. Once the strain analysis is completed, the capping material is added back to the heterostructure for electronic band calculation. The strain-induced potential is incorporated into the three-dimensional steady-state Schrödinger equation with the aid of Pikus–Bir Hamiltonian with modified Luttinger–Kohn formalism for the electronic band structure calculation. The strain field, the energy levels and wave functions are found numerically by using of a finite element package FEMLAB. The energy levels as well as the wave functions of both conduction and valence bands of quantum dot are calculated. Finally, the transition energy of ground state is also computed. Numerical results reveal that not only the strain field but also all other optical properties from current model show significant difference from the counterparts of the conventional model.  相似文献   

6.
Vertically stacked and coupled InAs/GaAs self-assembled quantum dots (SADs) are predicted to exhibit strong hole localization even with vanishing separation between the dots, and a nonparabolic dependence of the interband transition energy on the electric field, which is not encountered in single SAD structures. Our study based on an eight-band strain-dependent k x p Hamiltonian indicates that this anomalous quantum confined Stark effect is caused by the three-dimensional strain field distribution which influences drastically the hole states in the stacked SAD structures.  相似文献   

7.
郭汝海  时红艳  孙秀冬 《中国物理》2004,13(12):2141-2146
The quantum confined Stark effect (QCSE) of the self-assembled InAs/GaAs quantum dots has been investigated theoretically. The ground-state transition energies for quantum dots in the shape of a cube, pyramid or “truncated pyramid” are calculated and analysed. We use a method based on the Green function technique for calculating thestrain in quantum dots and an efficient plane-wave envelope-function technique to determine the ground-state electronic structure of them with different shapes. The symmetry of quantum dots is broken by the effect of strain. So the properties of carriers show different behaviours from the traditional quantum device. Based on these results, we also calculate permanent built-in dipole moments and compare them with recent experimental data. Our results demonstrate that the measured Stark effect in self-assembled InAs/GaAs quantum dot structures can be explained by including linear grading.  相似文献   

8.
One-dimensional ordered quantum-ring chains are fabricated on a quantum-dot superlattice template by molecular beam epitaxy. The quantum-dot superlattice template is prepared by stacking multiple quantum-dot layers and quantum-ring chains are formed by partially capping quantum dots. Partially capping InAs quantum dots with a thin layer of GaAs introduces a morphological change from quantum dots to quantum rings. The lateral ordering is introduced by engineering the strain field of a multi-layer InGaAs quantum-dot superlattice.  相似文献   

9.
应变补偿层对量子点生长影响的理论研究   总被引:2,自引:0,他引:2       下载免费PDF全文
量子点的光学特性与量子点的大小均匀性、密度、内部应变以及隔离层的厚度等有密切关系.文中从理论角度定量研究了GaNXAs1-X应变补偿层对InAs/GaAs量子点生长质量的改善作用,分析了应变补偿层对隔离层厚度减小的作用.讨论了应变补偿层的补偿位置和补偿层N组分X对量子点生长时局部应变和体系应变的补偿作用.分析了应变补偿层对体系应变的减少作用,并计算了相邻层量子点的垂直对准概率.研究结果对实验中应变补偿的优化和高质量量子点阵列的生长实现提供了理论依据.  相似文献   

10.
Tomographic nanometer-scale images of self-assembled InAs/GaAs quantum dots have been obtained from surface-sensitive x-ray diffraction. Based on the three-dimensional intensity mapping of selected regions in reciprocal space, the method yields the shape of the dots along with the lattice parameter distribution and the vertical interdiffusion profile on a subnanometer scale. The material composition is found to vary continuously from GaAs at the base of the dot to InAs at the top.  相似文献   

11.
In this work, the electric field-induced Franz-Keldysh effect was used to investigate the localized electric fields in GaAs interfaces attributed to strain effect of InAs/GaAs quantum dots (QD). The electric fields were investigated by photoreflectance spectroscopy (PR). PR spectra of the InAs/GaAs QDs showed complex Franz-Keldysh oscillations (FKOs) with various temperatures. It is suggested that the FKOs originated from the interface electric fields predominately caused by the strain-induced polarization at GaAs interface near the InAs QDs. The InAs/GaAs QDs have a broad range of interface electric fields from ~104 V/cm to ~2х105 V/cm. Temperature behavior of FKO amplitude distribution is explained by temperature dependent carrier confinement effect.  相似文献   

12.
Reflection high-energy electron diffraction, atomic force microscopy, transmission electron microscopy, and double-crystal X-ray curves showed that high-quality InAs quantum dot (QD) arrays inserted into GaAs barriers were embedded in an Al0.3Ga0.7As/GaAs heterostructure. The temperature-dependent photoluminescence (PL) spectra of the InAs/GaAs QDs showed that the exciton peak corresponding interband transition from the ground electronic subband to the ground heavy-hole subband (E1-HH1) was dominantly observed and that the peak position and the full width at half maximum corresponding to the interband transitions of the PL spectrum were dependent on the temperature. The activation energy of the electrons confined in the InAs/GaAs QDs was 115 meV. The electronic subband energy and the energy wave function of the Al0.3Ga0.7As/GaAs heterostructures were calculated by using a self-consistent method. The electronic subband energies in the InAs/GaAs QDs were calculated by using a three-dimensional spatial plane wave method, and the value of the calculated (E1-HH1) transition in the InAs/GaAs QDs was in reasonable agreement with that obtained from the PL measurement.  相似文献   

13.
We present a numerical calculation of many-exciton complexes in self-assembled InAs/GaAs quantum dots. We apply continuum elasticity theory and atomistic valence-force-field method to calculate strain distribution, and make use of various methods, ranging from a quasi-atomistic tight-binding approach to the single-band effective-mass approximation, to obtain single-particle energy levels. The effect of strain is incorporated by the deformation potential theory. We expand multiexciton states in the basis of Slater determinants and solve the many-body problem by the configuration-interaction method. The dynamics of multiexcitons is studied by solving the rate equations, from which the excitation–power dependence of emission spectrum is obtained. The emission spectra calculated by the microscopic tight-binding approach are found to be in good agreement with those obtained by the simple effective-mass method.  相似文献   

14.
Entropies associated with the transition of electrons into and out of InAs/GaAs quantum dots (QDs) are calculated by considering the temperature dependence of energy eigenvalues due to strain and energy band offset variations. It is found that, for InAs/GaAs quantum dots with base/height dimensions of 20/10 nm, the contribution from the surrounding lattice to entropy is smaller than for the temperature region below 100 K, where most measurements of thermal emission rates are performed. Including the electron degeneracy, the total entropy change has an upper limit of when releasing the first electron from the s-shell, while the second released s-electron is connected with an entropy change not larger than the absolute value of .  相似文献   

15.
The compositional distribution of InAs quantum dots grown by molecular beam epitaxy on GaAs capped InAs quantum dots has been studied in this work. Upper quantum dots are nucleated preferentially on top of the quantum dots underneath, which have been nucleated by droplet epitaxy. The growth process of these nanostructures, which are usually called as quantum dots molecules, has been explained. In order to understand this growth process, the analysis of the strain has been carried out from a 3D model of the nanostructure built from transmission electron microscopy images sensitive to the composition.  相似文献   

16.
Reflection high-energy electron diffraction (RHEED) and atomic force microscopy (AFM) measurements were used to investigate the dependences of the formation process and the strain on the As/In ratio and the substrate temperature of InAs quantum dots (QDs) grown on GaAs substrates by using molecular beam epitaxy. The thickness of the InAs wetting layer and the shape and the size of the InAs QDs were significantly affected by the As/In ratio and the substrate temperature. The strains in the InAs layer and the GaAs substrate were studied by using RHEED patterns. The magnitude in strain of the InAs QDs formed at a low substrate temperature was larger than that in InAs QDs grown at high substrate temperature. The present results can help to improve the understanding of the formation process and the strain effect in InAs QDs.  相似文献   

17.
Electron and hole effective masses in self-assembled InAs/GaAs quantum dots are determined by fitting the energy levels calculated by a single-band model to those obtained by a more sophisticated tight-binding method. For the dots of various shapes and dimensions, the electron effective-mass is found to be much larger than that in the bulk and become anisotropic in the dots of large aspect ratio while the hole effective-mass becomes almost isotropic in the dots of small aspect ratio. For flat InAs/GaAs quantum dots, the most appropriate value for the electron and hole effective-mass is believed to be the electron effective-mass in bulk GaAs and the vertical heavy-hole effective-mass in bulk InAs, respectively.  相似文献   

18.
孙伟峰  郑晓霞 《物理学报》2012,61(11):117301-117301
通过广义梯度近似的第一原理全电子相对论计算, 研究了不同界面类型InAs/GaSb超晶格的界面结构、电子和光吸收特性. 由于四原子界面的复杂性和低对称性, 通过对InAs/GaSb超晶格进行电子总能量和应力最小化来确定弛豫界面的结构参数. 计算了InSb, GaAs型界面和非特殊界面(二者交替)超晶格的能带结构和光吸收谱, 考察了超晶格界面层原子发生弛豫的影响.为了证实能带结构的计算结果, 用局域密度近似和Hartree-Fock泛函的平面波方法进行了计算. 对不同界面类型InAs/GaSb超晶格的能带结构计算结果进行了比较, 发现界面Sb原子的化学键和离子性对InAs/GaSb超晶格的界面结构、 能带结构和光学特性起着至关重要的作用.  相似文献   

19.
Electron spectral properties of the InAs/GaAs quantum ring   总被引:1,自引:0,他引:1  
A 3D model of semiconductor quantum ring (QR) based on the single sub-band approach with an energy-dependent electron effective mass is considered. The non-linear energy confinement problem is numerically solved iteratively by using the finite elements method. We calculate the energy spectrum of the electron states for the InAs/GaAs QR using the geometrical parameters obtained in the fabrication of such rings by A. Lorke, et al. (Phys. Rev. Lett. 84 (2000) 2223). The calculated energies are compared with the experimental data.  相似文献   

20.
Photoluminescence (PL) measurements have been carried out to investigate the annealing effects in one-period and three-periods of InAs/GaAs self-assembled quantum dots (QDs) grown on GaAs substrates by using molecular beam epitaxy. After annealing, the PL spectra for the annealed InAs/GaAs QDs showed dramatic blue shifts and significant linewidth narrowing of the PL peaks compared with the as-grown samples. The variations in the PL peak position and the full width at half-maximum of the PL peak are attributed to changes in the composition of the InAs QDs resulting from the interdiffusion between the InAs QDs and the GaAs barrier and to the size homogeneity of the QDs. These results indicate that the optical properties and the crystal qualities of InAs/GaAs QDs are dramatically changed by thermal treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号