首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
刘永庆  程荣军  葛红霞 《中国物理 B》2013,22(10):100204-100204
The present paper deals with the numerical solution of the coupled Schrdinger-KdV equations using the elementfree Galerkin(EFG) method which is based on the moving least-square approximation.Instead of traditional mesh oriented methods such as the finite difference method(FDM) and the finite element method(FEM),this method needs only scattered nodes in the domain.For this scheme,a variational method is used to obtain discrete equations and the essential boundary conditions are enforced by the penalty method.In numerical experiments,the results are presented and compared with the findings of the finite element method,the radial basis functions method,and an analytical solution to confirm the good accuracy of the presented scheme.  相似文献   

2.
The smoothing thin plate spline (STPS) interpolation using the penalty function method according to the optimization theory is presented to deal with transient heat conduction problems. The smooth conditions of the shape functions and derivatives can be satisfied so that the distortions hardly occur. Local weak forms are developed using the weighted residual method locally from the partial differential equations of the transient heat conduction. Here the Heaviside step function is used as the test function in each sub-domain to avoid the need for a domain integral. Essential boundary conditions can be implemented like the finite element method (FEM) as the shape functions possess the Kronecker delta property. The traditional two-point difference method is selected for the time discretization scheme. Three selected numerical examples are presented in this paper to demonstrate the availability and accuracy of the present approach comparing with the traditional thin plate spline (TPS) radial basis functions.  相似文献   

3.
Numerical modeling on the composite electromagnetic (EM) scattering from a two-dimensional (2-D) object located on a rough surface is presented by using the efficient method of fundamental solution (MFS). The proposed special choice of the MFS is an interesting alternative to the onerous mesh generation in the traditional numerical methods, particularly for the method of moment (MoM). There is no mesh scheme and singularity analysis, the field to be solved can be obtained directly in terms of the fundamental solutions of the appropriate wave equations. The numerical results are obtained and compared with the traditional MoM results, to demonstrate the accuracy and effectiveness of this technique.  相似文献   

4.
葛红霞  刘永庆  程荣军 《中国物理 B》2012,21(1):10206-010206
The present paper deals with the numerical solution of time-fractional partial differential equations using the element-free Galerkin (EFG) method, which is based on the moving least-square approximation. Compared with numerical methods based on meshes, the EFG method for time-fractional partial differential equations needs only scattered nodes instead of meshing the domain of the problem. It neither requires element connectivity nor suffers much degradation in accuracy when nodal arrangements are very irregular. In this method, the first-order time derivative is replaced by the Caputo fractional derivative of order α (0<α ≤1). The Galerkin weak form is used to obtain the discrete equations, and the essential boundary conditions are enforced by the penalty method. Several numerical examples are presented and the results we obtained are in good agreement with the exact solutions.  相似文献   

5.
The space-time conservation element and solution element (CESE) scheme based on the concept of space-time conservation integration scheme is a new second order numerical In order to further overcome excessive numerical damping due to small Courant-Friedrichs-Lewy (CFL) number and to obtain a high quality solution, a Courant number insensitive (CNIS) scheme and a high-order scheme have been proposed by Chang et al. for fluid mechanics problems recently. In this study, to explore the potential capability of applications of the CNIS CESE scheme and the high-order CESE scheme to magnetohydrodynamics (MHD) equations, several benchmark MHD problems are calculated in one and two dimensions: (i) Brio and Wu's shock tube, (ii) Dal and Woodward's case, (iii) the Orszag-Tang vortex problem, (iv) the Riemann problem. The numerical results just prove that the CNIS scheme is more accurate and can keep the divergence free condition of the magnetic field, even if the CFL number is 〈〈 1. Meanwhile, the tests show that the high order CESE scheme possesses the ability to solve MHD problems but is sensitive to the Courant number.  相似文献   

6.
马利敏  吴宗敏 《中国物理 B》2010,19(1):10201-010201
In this paper, we use a kind of univariate multiquadric quasi-interpolation to solve a parabolic equation with overspecified data, which has arisen in many physical phenomena. We obtain the numerical scheme by using the derivative of the quasi-interpolation to approximate the spatial derivative of the dependent variable and a simple forward difference to approximate the temporal derivative of the dependent variable. The advantage of the presented scheme is that the algorithm is very simple so it is very easy to implement. The results of the numerical experiment are presented and are compared with the exact solution to confirm the good accuracy of the presented scheme.  相似文献   

7.
王聚丰  孙凤欣  程荣军 《中国物理 B》2010,19(6):60201-060201
The present paper deals with the numerical solution of the third-order nonlinear KdV equation using the element-free Galerkin (EFG) method which is based on the moving least-squares approximation. A variational method is used to obtain discrete equations, and the essential boundary conditions are enforced by the penalty method. Compared with numerical methods based on mesh, the EFG method for KdV equations needs only scattered nodes instead of meshing the domain of the problem. It does not require any element connectivity and does not suffer much degradation in accuracy when nodal arrangements are very irregular. The effectiveness of the EFG method for the KdV equation is investigated by two numerical examples in this paper.  相似文献   

8.
李淑玲  李小林 《中国物理 B》2014,23(2):28702-028702
In this paper, radial basis functions are used to obtain the solution of evolution equations which appear in variational level set method based image segmentation. In this method, radial basis functions are used to interpolate the implicit level set function of the evolution equation with a high level of accuracy and smoothness. Then, the original initial value problem is discretized into an interpolation problem. Accordingly, the evolution equation is converted into a set of coupled ordinary differential equations, and a smooth evolution can be retained. Compared with finite difference scheme based level set approaches, the complex and costly re-initialization procedure is unnecessary. Numerical examples are also given to show the efficiency of the method.  相似文献   

9.
陈丽  程玉民 《中国物理 B》2010,19(9):90204-090204
On the basis of the reproducing kernel particle method (RKPM), a new meshless method, which is called the complex variable reproducing kernel particle method (CVRKPM), for two-dimensional elastodynamics is presented in this paper. The advantages of the CVRKPM are that the correction function of a two-dimensional problem is formed with one-dimensional basis function when the shape function is obtained. The Galerkin weak form is employed to obtain the discretised system equations, and implicit time integration method, which is the Newmark method, is used for time history analysis. And the penalty method is employed to apply the essential boundary conditions. Then the corresponding formulae of the CVRKPM for two-dimensional elastodynamics are obtained. Three numerical examples of two-dimensional elastodynamics are presented, and the CVRKPM results are compared with the ones of the RKPM and analytical solutions. It is evident that the numerical results of the CVRKPM are in excellent agreement with the analytical solution, and that the CVRKPM has greater precision than the RKPM.  相似文献   

10.
In this paper, we consider a numerical approximation for the boundary optimal control problem with the control constraint governed by a heat equation defined in a variable domain. For this variable domain problem, the boundary of the domain is moving and the shape of theboundary is defined by a known time-dependent function. By making use of the Galerkin finite element method, we first project the original optimal control problem into a semi-discrete optimal control problem governed by a system of ordinary differential equations. Then, based on the aforementioned semi-discrete problem, we apply the control parameterization method to obtain an optimal parameter selection problem governed by a lumped parameter system, which can be solved as a nonlinear optimization problem by a Sequential Quadratic Programming (SQP) algorithm. The numerical simulation is given to illustrate the effectiveness of our numerical approximation for the variable domain problem with the finite element method and the control parameterization method.  相似文献   

11.
In this paper,Runge-Kutta Discontinuous Galerkin(RKDG) finite element method is presented to solve the onedimensional inviscid compressible gas dynamic equations in a Lagrangian coordinate.The equations are discretized by the DG method in space and the temporal discretization is accomplished by the total variation diminishing Runge-Kutta method.A limiter based on the characteristic field decomposition is applied to maintain stability and non-oscillatory property of the RKDG method.For multi-medium fluid simulation,the two cells adjacent to the interface are treated differently from other cells.At first,a linear Riemann solver is applied to calculate the numerical ?ux at the interface.Numerical examples show that there is some oscillation in the vicinity of the interface.Then a nonlinear Riemann solver based on the characteristic formulation of the equation and the discontinuity relations is adopted to calculate the numerical ?ux at the interface,which suppresses the oscillation successfully.Several single-medium and multi-medium fluid examples are given to demonstrate the reliability and efficiency of the algorithm.  相似文献   

12.
We study the hyperbolic–parabolic equations with rapidly oscillating coefficients. The formal second-order two-scale asymptotic expansion solutions are constructed by the multiscale asymptotic analysis. In addition, we theoretically explain the importance of the second-order two-scale solution by the error analysis in the pointwise sense. The associated explicit convergence rates are also obtained. Then a second-order two-scale numerical method based on the Newmark scheme is presented to solve the equations. Finally, some numerical examples are used to verify the effectiveness and efficiency of the multiscale numerical algorithm we proposed.  相似文献   

13.
In the present paper, a three-dimensional (3D) Eulerian technique for the 3D numerical simulation of high-velocity impact problems is proposed. In the Eulerian framework, a complete 3D conservation element and solution element scheme for conservative hyperbolic governing equations with source terms is given. A modified ghost fluid method is proposed for the treatment of the boundary conditions. Numerical simulations of the Taylor bar problem and the ricochet phenomenon of a sphere impacting a plate target at an angle of 60~ are carried out. The numerical results are in good agreement with the corresponding experimental observations. It is proved that our computational technique is feasible for analyzing 3D high-velocity impact problems.  相似文献   

14.
Nonlinear behavior of single-layer squarely-reticulated shallow spherical shells with geometrical imperfections subjected to a central concentrated (joint) load has been studied in this paper. Using the asymptotic iteration method, an analytical characteristic relationship between the non-dimensional load and central deflection is obtained. The resulting asymptotic solution can be used readily to perform the analysis of parameters and predict the buckling critical load. Meanwhile, numerical examples are presented and effects of imperfection factor and boundary conditions on buckling of the structures are discussed. Comparisons with data based on the finite element method show good exactness of the resulting solution.  相似文献   

15.
A scheme is developed to study numerical solution of the space- and time-fractional Burgers equations under initial conditions by the homotopy analysis method. The fractional derivatives are considered in the Caputo sense. The solutions are given in the form of series with easily computable terms. Numerical solutions are calculated for the fractional Burgers equation to show the nature of solution as the fractional derivative parameter is changed.  相似文献   

16.
In this paper a modifed continuous energy law was explored to investigate transport behavior in a gas metal arc welding(GMAW)system.The energy law equality at a discrete level for the GMAW system was derived by using the finite element scheme.The mass conservation and current density continuous equation with the penalty scheme was applied 10 improve the stability.According to the phase-field model coupled with the energy law preserving method,the GMAW model was discretized and a metal transfer process with a pulse current was simulated.It was found that the numerical solution agrees well with the data of the metal transfer process obtained by high-speed photography.Compared with the numerical solution of the volume of fuid model,which was widely studied in the GMAW system based on the finite element method Euler scheme,the energy law preserving method can provide better accuracy in predicting the shape evolution of the droplet and with a greater computing efficiency.  相似文献   

17.
A new full time-domain nonlinear coupled method has been established and then applied to predict the responses of a Truss Spar in irregular wave.For the coupled analysis,a second-order time-domain approach is developed to calculate the wave forces,and a finite element model based on rod theory is established in three dimensions in a global coordinate system.In numerical implementation,the higher-order boundary element method(HOBEM)is employed to solve the velocity potential,and the 4th-order Adams-Bashforth-Moultn scheme is used to update the second-order wave surface.In deriving convergent solutions,the hull displacements and mooring tensions are kept consistent at the fairlead and the motion equations of platform and mooring-lines/risers are solved simultaneously using Newmark-integration scheme including Newton-Raphson iteration.Both the coupled quasi-static analysis and the coupled dynamic analysis are performed.The numerical simulation results are also compared with the model test results,and they coincide very well as a whole.The slow-drift responses can be clearly observed in the time histories of displacements and mooring tensions.Some important characteristics of the coupled responses are concluded.  相似文献   

18.
A finite difference scheme based on the polynomial interpolation is constructed to solve the quasi-vector equations for optical waveguides with step-index profiles. The discontinuities of the normal components of the electric field across abrupt dielectric interfaces are taken into account. The numerical results include the polarization effects, but the memory requirement is the same as in solving the scalar wave equation. Moreover, the proposed finite difference scheme can be applied to both uniform and non-uniform mesh grids. The modal propagation constants and field distributions for a buried rectangular waveguide and a rib waveguide are presented. Solutions are compared favorably with those obtained by the numerical approaches published earlier.  相似文献   

19.
A scheme for the impulsive control of nonlinear systems with time-varying delays is investigated in this paper. Based on the Lyapunov-like stability theorem for impulsive functional differential equations (FDEs), some sufficient conditions are presented to guarantee the uniform asymptotic stability of impulsively controlled nonlinear systems with time-varying delays. These conditions are more effective and less conservative than those obtained. Finally, two numerical examples are provided to demonstrate the effectiveness of the proposed method.  相似文献   

20.
A finite difference scheme based on the polynomial interpolation is constructed to solve the quasi-vector equations for optical waveguides with step-index profiles. The discontinuities of the normal components of the electric field across abrupt dielectric interfaces are taken into account. The numerical results include the polarization effects, but the memory requirement is the same as in solving the scalar wave equation. Moreover, the proposed finite difference scheme can be applied to both uniform and non-uniform mesh grids. The modal propagation constants and field distributions for a buried rectangular waveguide and a rib waveguide are presented. Solutions are compared favorably with those obtained by the numerical approaches published earlier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号