首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
杨鹏  韩天成 《物理学报》2018,67(10):107801-107801
红外吸收器在红外隐身、辐射制冷、红外探测、传感器等方面有重要的应用前景.一维光栅型吸收器由于其结构简单、易于加工的优势备受关注,然而其不足之处是频带很窄,且只对一种极化有效.本文提出了一种基于简单一维周期结构的双波段宽带吸收器,对横磁波和横电波都有效,且吸波频段随入射波的极化方式而改变.该结构的基本单元由八个梯度排列的子单元构成,每个子单元由两层金属-介质双层膜垂直层叠组成.全波仿真结果表明,在1.68—2μm波段,该结构对横磁波吸收超过90%,而对横电波吸收很小(小于6%);在3.8-3.9μm波段,该结构对横电波吸收超过90%,而对横磁波吸收很小(小于5%).另外,该结构具有宽角度吸收特性,当入射角增大到60°时仍然能够保持较高的吸收率和较宽的吸收频带.  相似文献   

2.
设计了一种基于LiF和NaF材料的光栅型超宽带红外吸收器,并采用频域有限差分法对其吸收特性进行了研究。研究结果表明,单独采用LiF(或NaF)和电介质材料构成的光栅型吸收器都具有较宽的吸收带,但其吸收带处于不同的红外波段。同时采用LiF、NaF及电介质材料构成的光栅型吸收器可以把这两个吸收带衔接起来。通过优化参数,在入射波长为15~45μm、入射角度为0°~80°的范围内,吸收器的吸收率达到80%以上,实现了宽带吸收。结构中复合层的层数对吸收率有最大的影响,电介质层的厚度对吸收率的影响较小。  相似文献   

3.
基于树枝结构单元的超材料宽带微波吸收器   总被引:4,自引:0,他引:4       下载免费PDF全文
保石  罗春荣  张燕萍  赵晓鹏 《物理学报》2010,59(5):3187-3191
本文设计并制作了一种基于树枝结构单元的超材料宽带微波吸收器.该超材料吸收器采用夹层结构,由按六边形密集排布的金属树枝阵列、双层介质基板和金属薄膜组成.通过调节树枝单元的几何参数和金属树枝阵列的排布方式,可以出现三个吸收峰,实现三频工作.通过调节三个吸收峰工作的频率形成宽频吸收,采用夹层结构提高吸收效率,从而对垂直入射到超材料表面的微波实现高吸收.实验表明吸收器的反射曲线从9.79 GHz到11.72 GHz出现了反射率小于10%的较宽吸收带,透射曲线恒等于0,吸收率大于90%的带宽为1.93 GHz.这种 关键词: 树枝状结构 夹层结构 吸收效率 吸收带宽  相似文献   

4.
为了增强单层石墨烯在可见光和近红外波段的吸收效率并实现多通道光吸收.本文利用石墨烯-金属光栅-介质层-金属衬底混合结构在λ_1=0.553μm、λ_2=0.769μm、λ_3=1.130μm三通道上提高了石墨烯吸收效率,石墨烯吸收效率最高可达41%.对3个光吸收增强通道的磁场分布分析可得它们分别源于表面等离子体激元共振、法布里-帕罗干涉腔共振、磁激元共振.经过模拟分析可知,通过调节金属光栅宽度、介质层厚度可以调谐混合结构的共振峰波长和吸收效率,而石墨烯化学势仅能对共振峰λ_3的吸收效率有影响.最后优化结构参数,在最优结构参数下混合结构在3个光吸收增强通道的光吸收效率可达0.97以上,这可以作为超材料吸收器.  相似文献   

5.
在纳米偶极子等效电路的基础上,结合多层波导与谐振腔结构,设计了一种高吸收率、宽波段的纳米超材料太阳能吸收器。该吸收器的单元结构是由双六边形超材料纳米柱与Si圆环柱组成,其中Si圆环中镶嵌了8个微型Au纳米圆柱。采用时域有限差分方法分析了纳米超材料吸收器在宽波段、不同偏振状态的入射光以及大角度入射光下的吸收特性。数值分析表明,该吸收器的吸收波段主要集中在400~1500nm,其平均吸收率可以达到94%。不同偏振状态的入射光对吸收器的吸收率影响较小,且在±60°大入射角度时该吸收器的平均吸收率仍可达到90%。该吸收器宽波段的高吸收率是由慢波效应与局域表面等离子体共振的共同作用引起的。  相似文献   

6.
太赫兹超材料吸收器作为一种重要的太赫兹功能器件,被广泛应用于生物医学传感、电磁隐身、军用雷达等多个领域。但这种传统的超材料吸收器结构具有可调谐性差、功能单一、性能指标不足等缺点,已经无法满足复杂多变的电磁环境的要求,因此可调谐超材料吸收器逐渐成为了太赫兹功能器件领域的研究热点。为实现超材料吸收器吸收特性的调谐,通常从调节谐振单元或基底材料的电磁特性或调节超材料结构单元的几何尺寸两个方面出发。设计了一种基于石墨烯和二氧化钒的太赫兹宽带可调谐超材料吸收器。该吸收器由工字型二氧化钒谐振层、连续石墨烯层和被Topas介质隔开的金属反射层组成。数值模拟结果表明,当二氧化钒材料处于全金属状态(电导率为200 000 S·m-1)且石墨烯的费米能级设为0.1 eV时,吸收率超过90%的吸收带宽达到了2.8 THz。通过调节石墨烯的费米能级,使其在0.1~0.3 eV之间变化时,该吸收器的工作频率发生了明显的蓝移。由于二氧化钒材料从绝缘状态到金属状态的相变特性,通过控制电导率使其在100~200 000 S·m-1之间变化时,所提出的宽频结构在反射器和吸收器两种工作状态之间自由切换。此外,还分别监测了该超材料吸收器在1.87,3.04和4.16 THz三个完美吸收峰处的表面电流分布,讨论了其工作机理。所设计的结构通过石墨烯和二氧化钒两个独立可调“开关”实现了对吸收器工作频率和吸收振幅的双重控制,为设计多功能太赫兹器件提供了新的发展思路。  相似文献   

7.
本文提出一种方向不敏感多带吸收的新结构,即结合光学声子色散材料及无色散介电材料,将其作为单一尺寸金属/介质/金属微光栅的介质分离层。在红外大气窗口波段激发了基模磁激元谐振因此导致多频带吸收。基于有限元方法求解了混合结构的吸收率及电磁场分布,并研究了入射角及结构参数的变化对多峰值吸收的影响。考虑到磁激元的本质是由金属光栅下表面与金属基底上表面诱导出反向电流震荡引起,多层介质膜起到介电隔离层的作用。对多层介质膜进行等效介质理论近似,并通过等效LC电路预测和分析了基模磁激元谐振频点。本文所提出的多带吸收机理在红外探测、辐射制冷领等域具有应用前景。  相似文献   

8.
使用经典洛伦兹谐振子模型对热蒸发制备的锗、硫化锌以及低吸收稀土氟化物薄膜的红外透射光谱进行拟合,得出这些材料在中长波红外区的光学常量.使用这三种材料设计并制备了锗窗口7.7~15μm宽带增透膜系,通过优化设计并且使用长波红外区吸收小的低折射率材料,在长波区(13~15μm)的透过率测量值有明显提高,15μm处的透过率为89.9%.  相似文献   

9.
基于双波段系统的多层衍射光学元件(MLDOE)的带宽积分衍射效率(PIDE),建立其与入射角度和基底材料关系的数学模型,提出一种双波段斜入射多层衍射光学元件基底材料的选择方法,并通过该方法选择出双波段多层衍射光学元件基底材料的最佳组合方案。方法的提出以及数学模型的建立,解决了光线斜入射时基底材料选择不当导致多层衍射元件衍射效率和带宽积分衍射效率下降的问题,为多层衍射元件在多波段和宽波段系统中的应用提供理论指导。依据该方法,设计了适用于中波红外3.7~4.8μm(MWIR)和长波红外7.7~9.5μm(LWIR)双波段的多层衍射光学元件,并利用该衍射元件设计了10倍中长波折衍混合双波段红外变焦系统。结果表明,该系统在中波红外奈奎斯特频率处的调制传递函数(MTF)均大于0.52,在长波红外奈奎斯特频率处的MTF均大于0.35。  相似文献   

10.
对新型条形辐射探测芯片的吸收膜层进行了理论分析,并且在金刚石材质的探测芯片上采用电镀方法制备了镍磷黑吸收膜.辐射探测芯片的膜层吸收分析表明,芯片吸收膜层的吸收率正比于表面粗糙度.通过对辐射吸收膜层设计与制作工艺的研究,制备出一种用于条形辐射探测芯片的镍磷黑吸收膜,通过测量其表面形貌结构,表明该膜层具有50nm—1.5μm范围的微结构;红外吸收测试表明其吸收率在1.4—8μm波段为0.989以上,从而提高了辐射探测芯片的性能.  相似文献   

11.
A metamaterial absorber is proposed that functions in the medium- (3–5 µm) and long-wavelength (8–12 µm) infrared (medium-wavelength infrared, MWIR, and long-wavelength infrared, LWIR, respectively) regions. The proposed design, which consists of periodic cells, can be tuned to achieve single-band or dual-band light absorption by changing the periodicity of the structure. Each cell forming the metamaterial absorber consists of a bottom metal plate (Al), a top metal disk (Ti), and an intermediate dielectric medium (Si or ZnS) in which a metal disk (Ti) is embedded. For a period of 0.85 µm, the absorber achieves broadband absorption in the LWIR region, with an average absorption of 92.1%. Further, the absorber shows acceptable tolerance to irradiation at oblique incidence. For a period of 2 µm, a peak absorption of 99.05% is achieved in the MWIR region, thereby providing dual-band absorption. Tuning the periodicity of the structure enhances the localized surface plasmon resonance, with the absorption mechanism explained by establishing an equivalent parallel LC circuit. The absorption properties demonstrated by the proposed metamaterial absorber are promising for thermal imaging and infrared spectroscopy.  相似文献   

12.
A broadband metamaterial absorber with high absorption simultaneously in mid-wave infrared (MWIR) and long-wave infrared (LWIR) was proposed. In the MWIR, the absorption higher than 0.8 is from 4 to 6.3 µm, while the absorption in the LWIR is from 8.7 and 9.6 µm. The absorber is insensitive to the incident angle. The broadband absorption in the MWIR is due to the slow-light effect of the trapezoid multilayered grating structure. And the broadband absorption in the LWIR is due to the phonon polariton resonant of trapezoid SiO2 layer. In the broadband high absorption region, the atmosphere is transparent, which may greatly promote the practical application of the absorber in double-color IR imaging, detecting, infrared stealth and thermal emitting.  相似文献   

13.
We propose a periodic structure as an extra absorption layer(i.e., absorber) based on surface plasmon resonance effects, enhancing dual-band absorption in both middle wavelength infrared(MWIR) and long wavelength infrared(LWIR)regions. Periodic gold disks are selectively patterned onto the top layer of suspended SiN/VO_2/SiN sandwich-structure.We employ the finite element method to model this structure in COMSOL Multiphysics including a proposed method of modulating the absorption peak. Simulation results show that the absorber has two absorption peaks at wavelengths λ =4.8 μm and λ = 9 μm with the absorption magnitudes more than 0.98 and 0.94 in MWIR and LWIR regions, respectively. In addition, the absorber achieves broad spectrum absorption in LWIR region, in the meanwhile, tunable dual-band absorption peaks can be achieved by variable heights of cavity as well as diameters and periodicity of disk. Thus, this designed absorber can be a good candidate for enhancing the performance of dual band uncooled infrared detector, furthermore, the manufacturing process of cavity can be easily simplified so that the reliability of such devices can be improved.  相似文献   

14.
王栋  许军  陈溢杭 《物理学报》2018,67(20):207301-207301
介电常数为零或近零模式在微纳结构中提供了一个新的方式调控光与物质的相互作用.本文首先利用金属圆盘阵列结构激发了表面等离激元共振,在共振频率处实现了光的局域效果;然后通过在金属-绝缘体-金属超表面微纳结构中加入掺杂半导体材料,利用上层金属圆盘阵列激发的表面等离激元共振诱导介电常数近零模式的产生,从而使得介电常数近零模式与表面等离激元模式发生耦合,在中红外波段实现了一个470 nm的宽带吸收效果;数值模拟结果显示,在宽带吸收处存在光场的强局域效果.与窄带吸收相比,宽带吸收有更广泛的应用,比如吸收器、传感器、滤波器、微测辐射热计、光电探测器、相干热发射器、太阳能电池、指纹识别和能量收集装置等.  相似文献   

15.
江孝伟  武华 《物理学报》2021,(2):401-408
为了使超材料完美吸收器(metamaterial perfect absorber,MPA)能够同时实现吸收效率和吸收波长的控制,本文提出利用二氧化钒(VO2)和石墨烯作为MPA的材料,通过对MPA的结构设计,在红外波段实现了高吸收,吸收效率最高可达99%.研究发现通过改变VO2的温度和石墨烯的化学势,可同时实现MPA吸收效率和吸收波长的控制,吸收效率调制深度和吸收波长调谐范围分别可达97.08%和3.2μm.通过对MPA在吸收波长处的磁场分布分析可以得出,MPA能够产生高吸收是由于其形成了法布里-帕罗(Fabry-Pérot,FP)干涉腔共振,研究发现MPA的结构参数对FP腔的共振波长具有显著的影响.  相似文献   

16.
Kuang-Ling Guo 《中国物理 B》2021,30(11):114201-114201
The broadband metamaterial perfect absorber has been extensively studied due to its excellent characteristics and promising application prospect. In this work a solar broadband metamaterial perfect absorber is proposed based on the structure of the germanium (Ge) cone array and the indium arsenide (InAs) dielectric film on the gold (Au) substrate. The results show that the absorption covers the whole ultraviolet-visible and near-infrared range. For the case of A > 99%, the absorption bandwidth reaches up to 1230 nm with a wavelength range varied from 200 nm to 1430 nm. The proposed absorber is able to absorb more than 98.7% of the solar energy in a solar spectrum from 200 nm to 3000 nm. The electromagnetic dipole resonance and the high-order modes of the Ge cone couple strongly to the incident optical field, which introduces a strong coupling with the solar radiation and produces an ultra-broadband absorption. The absorption spectrum can be feasibly manipulated via tuning the structural parameters, and the polarization insensitivity performance is particularly excellent. The proposed absorber can possess wide applications in active photoelectric effects, thermion modulators, and photoelectric detectors.  相似文献   

17.
In this paper, we demonstrate a kind of broadband metamaterial perfect absorber using both graphene and metal resonator elements. Through step by step design and simulation, wider absorption band from about 4.22 THz to 7.48 THz with average absorption rate up to 98.21% is achieved in the absorption spectrum. In addition, the absorber has characteristics of polarization insensitivity and wide incident angle due to its inherent rotational symmetry. Moreover, the absorption band can be adjusted by changing the chemical potential of the graphene. The superiorities of broadband, high absorption rate, polarization independent and wide-angle characteristics make it have potential application prospects in electromagnetic wave absorbing, signal sensing and detection, and other optoelectronic devices.  相似文献   

18.
We present the model of an infrared metamaterial absorber composed of metallic leaf-shaped cells, dielectric substrate, and continuous metallic film. Numerical simulation confirms an absorptivity of 99.3% at the infrared frequency of 126.7 THz with this metamaterial model. The proposed metamaterial absorber could be fabricated with an electrochemical deposition technique. Our simulated results show the absorption feature of this metamaterial absorber could be well manipulated with different incident angles and radiation modes. The optical metamaterial absorber proposed in this paper has potential applications such as infrared imaging devices, thermal bolometers, wavelength-selective radiators, and optical bistable switches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号