首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Metastable fragmentation of silver bromide clusters   总被引:2,自引:0,他引:2  
The abundance spectra and the fragmentation channels of silver bromide clusters have been measured and analyzed. The most abundant species are AgnBrn - 1 + and AgnBrn + 1 - and Ag14Br13 + is a magic number, revealing their ionic nature. However, some features depart from what is generally observed for alkali-halide ionic clusters. From a certain size, AgnBrn - 1 + is no more the main series, and AgnBr n - 2, 3 + series become almost as important. The fast fragmentation induced by a UV laser makes the cations lose more bromine than silver ions and lead to more silver-rich clusters. Negative ions mass spectra contain also species with more silver atoms than required by stoichiometry. We have investigated the metastable fragmentation of the cations using a new experimental method. The large majority of the cations release mainly a neutral Ag3Br3 cluster. These decay channels are in full agreement with our recent ab initio DFT calculations, which show that Ag+-Ag+ repulsion is reduced due to a globally attractive interaction of their d orbitals. This effect leads to a particularly stable trimer (AgBr)3 and to quasi-planar cyclic structures of (AgBr)n clusters up to n = 6. We have shown that these two features may be extended to other silver halides, to silver hydroxides (AgOH)n, and to cuprous halide compounds. Received 9 November 2000 and Received in final form 25 January 2001  相似文献   

2.
Singly charged silver-cluster anions are produced in a laser vaporization source and transferred into a Penning trap. After size selection the clusters are subjected to an electron bath in the trap, which results in the attachment of further electrons. The relative abundance of dianions or trianions as a function of the clusters' size is analyzed by time-of-flight mass spectrometry. Silver-cluster dianions are observed for sizes n≥ 24 and trianions for n > 100. In addition, a detailed study of the cluster sizes 24 ?n? 60 shows a pronounced resistance to electron attachment for singly charged anions Agn - with a closed electronic shell, in particular Ag29 -, Ag33 -, and Ag39 -. Both the threshold size for the observation of dianionic silver clusters and the shell effects in the production yield correlate favorably with previous theoretical investigations of the respective electron affinities. Received 24 November 2000  相似文献   

3.
Photoinduced dissociation in the ultraviolet region has been investigated for Ag nF n-1 + cluster ions. Photodissociation spectrum of Ag2F+ in the energy of 3.8–5.6 eV exhibits several sharp bands corresponding to the transition to electronically excited states. In this dissociation, only the Ag2 + ion was observed as a fragment ion. Theoretical calculation indicates that the parent Ag2F+ ion has a linear Ag-F-Ag equilibrium geometries in the ground and excited states. Since conformational changes by excitation of bending vibration are necessary for the fragmentation of an F atom, this indicates that production of Ag2 + from Ag2F+ is a result of internal conversion and following conformational changes.  相似文献   

4.
Tight-binding model is developed to study the structural and electronic properties of silver clusters. The ground state structures of Ag clusters up to 21 atoms are optimized by molecular dynamics-based genetic algorithm. The results on small Agn clusters (n = 3-9) are comparable to ab initio calculations. The size dependence of electronic properties such as density of states, s-d band separation, HOMO-LUMO gap, and ionization potentials are discussed. Magic number behavior at Ag2, Ag8, Ag14, Ag18, Ag20 is obtained, in agreement with the prediction of electronic ellipsoid shell model. We suggest that both the electronic and geometrical effect play significant role in the coinage metal clusters. Received 7 August 2000  相似文献   

5.
Ab initio Molecular Dynamics (MD) method, based on density functional theory (DFT) with planewaves and pseudopotentials, was used to study the stability and internal motion in silver cluster Agn, with n =4-6. Calculations on the neutral, cationic and anionic silver dimer Ag2 show that the bond distance and vibrational frequency calculated by DFT are of good quality. Simulations of Ag4, Ag5, and Ag6 in canonical ensemble reveal distinct characteristics and isomerization paths for each cluster. At a temperature of 800 K, an Ag4 has no definite structure due to internal motion, while for Ag5 and Ag6the clusters maintain the planar structure, with atomic rearrangement observed for Ag5 but not for Ag6. At a temperature of 200 K, Ag4 can exist in two planar structures whilst Ag5 is found to be stable only in the planar form. In contrast Ag6 is stable in both planar trigonal and 3D pentagonal structures. Micro-canonical MD simulation was performed for all three clusters to obtain the vibrational density of states (DOS). Received 5 May 1999 and Received in final form 20 August 1999  相似文献   

6.
The decay pathway competition between monomer and dimer evaporation of photoexcited cluster ions Au + n, n = 2-27, has been investigated by photodissociation of size-selected gold clusters stored in a Penning trap. For n > 6 the two decay pathways are distinguished by their experimental signature in time-resolved measurements of the dissociation. For the smaller clusters, simple fragment spectra were used. As in the case of the other copper-group elements, even-numbered gold cluster ions decay exclusively by monomer evaporation, irrespective of their size. For small odd-size gold clusters, dimer evaporation is a competitive alternative, and the smaller the odd-sized clusters, the more likely they decay by dimer evaporation. In this respect, Au + 9 shows an anomalous behavior, as it is less likely to evaporate dimers than its two odd-numbered neighbors, Au + 7 and Au + 11. This nonamer anomaly is typical for copper-group cluster ions M + 9 (M = Cu, Ag, Au) and a similar behavior is found in the anionic heptamers M - 7. It is discussed in terms of the well-known electronic shell closing at n e = 8 atomic valence electrons. Received 2 November 2000  相似文献   

7.
The cross-sections for collisional charge transfer between singly charged free clusters M n + (M = Li, Na; n=1...50) and atomic targets A (cesium, potassium) have been measured as a function of collisional relative velocity in laboratory energy range 1–10 keV. For each cluster size, the experimental values of the charge transfer cross-section are fitted with an universal parametric curve with two independent parameters and vm, the maximum cross-section and the corresponding velocity. For small size clusters (), the characteristic parameters show strong variations with the number of atoms in the cluster. Abrupt dips observed for n=10 and n=22 are attributed to electronic properties. Charge transfer patterns observed for various collisional systems present similarities, which appear more sensitive to cluster quantum size effects than to collision energy defects. In their whole, the and vm parameters show differences in both their size evolution and their absolute values discussed in term of projectile and target electronic structures. Received 13 April 2000 and Received in final form 29 June 2000  相似文献   

8.
Vibrational spectra of mass-selected Ag+(H2O)n ions are measured by infrared photodissociation spectroscopy and analyzed with the aid of density functional theory calculations. Hydrogen bonding between H2O molecules is found to be absent for cold Ag+(H2O)3, but detected for Ag+(H2O)4 through characteristic changes in the position and intensity of OH-stretching transitions. The third H2O coordinates directly to Ag+, but the fourth H2O prefers solvation through hydrogen bonding. The preference of the tri-coordinated form is attributed to the inefficient 5s–4d hybridization in Ag+, in contrast to the efficient 4s–3d hybridization in Cu+. For Ag+(H2O)4, however, di-coordinated isomers are identified in addition to the tri-coordinated one.  相似文献   

9.
The emission of photons in the visible wavelength range from mass-selected Ag+ n, Cu+ n, Pt+ n and Pd+ n () clusters is observed. Photons are detected 10-4 s after the cluster generation in a sputter source. The emission intensities display distinct variations with cluster size and material. The observations are interpreted in terms of the decay of metastable states which are excited during the high-energy sputtering process used for the generation of these clusters. Received: 28 October 1997 / Revised: 5 January 1998 / Accepted: 30 January 1998  相似文献   

10.
In an experimental study, the multi-ionisation of metallic clusters (Nan) has been analysed in collisions with light ions in low charge states (H+, He+, He2+, O3+) at collision velocities below 1 a.u. Cluster ions are produced in charge states up to 5+. The average charge of the nano-particles is found to increase linearly with the variation of projectile velocity and the square of the effective projectile charge, well in agreement with the electronic stopping power of the bulk material. A fraction of 50% to 30% of the total projectile energy loss (decreasing with velocity) is transferred into vibrational modes in good agreement with recent theoretical predictions. Received 8 November 2000 and Received in final form 26 January 2001  相似文献   

11.
The geometrical structure of ground state Ban clusters (n =2-14) has been predicted from various types of calculations including two ab initio approaches used for the smaller sizes namely HF+MP2( n =2-6), DFT (LSDA)( n =2-6, 9) and one model approach HF+pairwise dispersion used for all sizes investigated here. The lowest energy configurations as well as some isomers have been investigated. The sizes n =4, 7 and 13 are predicted to be the relatively more stable ones and they correspond to the three compact structures: the tetrahedron, the pentagonal bipyramid and the icosahedron. The growth behavior from Ba7 to Ba13 appears to be characterized by the addition of atoms around a pentagonal bipyramid leading to the icosahedral structure of Ba13 which is consistent with the observed size-distribution of barium clusters. Values for vertical ionization potentials calculated for n =2-5 at the CI level are seen to be in quite good agreement with recent measures. Received: 14 May 1997 / Received in final form: 2 February 1998 / Accepted: 27 February 1998  相似文献   

12.
Photofragmentation of Fe(H2O)n + clusters (n =1-9) is investigated at three different wavelengths, 532, 355 and 266 nm. Two fragmentation pathways are observed depending essentially on the photon energy, but also on the parent size n. The fragmentation products belong to two ion families, Fe(H2O)m + and FeOH(H2O)m + , which correspond to dehydration and intracluster dehydrogenation reactions respectively. The ion yields are studied as a function of the laser fluence in order to determine the number of photons implied in the photofragmentation process. This allows us to estimate that the D[(H2O)n-1Fe+-(H2O)] bond energy is ranging between 0.44 eV and 0.55 eV for .Photon absorption cross sections are also derived from the fluence experiments, and two different behaviors are observed: i) At 355 nm, far away from any transition, progressive solvation of the metal ion results in an increasing absorption cross section from n =2 to n =9. This can be attributed to a forbidden transition of bare , which becomes progressively allowed because of the interaction with more and more water ligands. ii) At 266 nm, close to several allowed transitions of bare , a distinct maximum is observed for the absorption of ion. It may be attributed to a change in the spin multiplicity when switching from and on one hand to Fe(H2O) on the other. Received: 11 November 1997 / Revised: 18 February 1998 / Accepted: 22 April 1998  相似文献   

13.
The dimer dissociation energies of gold cluster ions Au + n , n = 9, 11, 13, 15 have been determined with an extension of a recently developed model-independent method. Monomer-dimer decay pathway branching ratios provide the energy dependent process which is needed in this method. The measured values are D 2 ( Au + 9 ) = 3.66(8)(9) eV, D 2 ( Au + 11 ) = 4.27(11)(8) eV, D 2 ( Au + 13 ) = 4.50(9)(7) eV and D 2 ( Au + 15 ) = 4.29(10)(6) eV. Received 13 May 2002 / Received in final form 22 July 2002 Published online 24 September 2002 RID="a" ID="a"e-mail: manuel.vogel@uni-mainz.de  相似文献   

14.
With the help of ab initio methods the clusters [(MgO)13Mg] Q+ are simulated for Q = 0, 1, 2. Then, vacancy clusters [(MgO)12Mg2] Q+ obtained by removing one oxygen atom are computed for Q running from 0 to 4. These clusters exhibit a slight sphericity and generally shorter interatomic distances than in the crystal. The electronic densities variations are studied in function of Q. In particular, it is observed that the electronic density in the oxygen vacancy goes to a maximum when Q = 2. The ionisation potentials vary from approximately 4 to 14 eV when Q varies from 0 to 3, with a more rapid increase from Q = 1 to Q = 2. The stability study of vacancy clusters show that they experience a phase transition when their charge becomes equal to 2, in accordance with the features mentioned above. Received 14 September 1999 and Received in final form 2 December 1999  相似文献   

15.
Using a high resolution laser photoelectron attachment method, we have studied the formation of (H 2 O) q - (q = 2, 6, 7, 11, 15) cluster ions in collisions of slow free electrons (E = 1-80 meV) and Rydberg electrons (n = 12-300) with water clusters. Resonances at zero energy have been observed, the shapes of which are strongly dependent on cluster size. The results are discussed in terms of the formation of metastable negative ions. Received 8 March 1999  相似文献   

16.
Nam(H2O)n Clusters ( n = 1...200, m = 1...50) are formed in a recently build pick-up arrangement. Preformed water clusters traverse a sodium oven, where sodium atoms are picked up. At low sodium vapour pressure ( < 1×10-4 mbar) pure Na(H2O)n clusters are observed in the mass spectra. At high sodium vapour pressure ( > 1×10-3 mbar) the water cluster pick up more than 50 Na atoms and reaction products Na(NaOH)n ( n = 2, 4...50) dominate the mass spectra. The even number of NaOH units in the products indicate that also in a finite cluster the reaction occurs in pairs as in the macroscopic reaction. Received 4 December 2000  相似文献   

17.
The absorption spectra of small Ag + n clusters are calculated at finite vibrational temperature by using a microscopic tight-binding RPA method. We consider free clusters with sizes between n = 3 and n =13 and take into account explicitly the degrees of freedom corresponding to the 4 d-electrons. We analyze the optical absorption as a function of the cluster size. We show that the contribution of the d-electrons has an important influence on the size dependence of the energy of the Mie plasmon. We also perform ensemble averages to obtain the absorption spectra for different vibrational temperatures. We obtain relatively good agreement with experiment for a temperature . The dynamics of the 4 d-electrons, which shows in small clusters an incipient delocalized character for n >7, yields an important contribution to the absorption spectrum already for n =13. We find that the strength of this contribution can be controlled by varying the vibrational temperature. Received: 4 January 1999 / Received in final form: 12 May 1999  相似文献   

18.
The ionization potential of sodium clusters () at a finite temperature is studied using density functional theory and ab initio molecular dynamics. The threshold regions of the photoionization efficiency curves are deduced from the integrated IP distributions, which are obtained from the energy eigenvalues of the highest occupied Kohn-Sham states during molecular dynamics by applying a theoretically well-defined shift. The calculated ionization potentials are directly compared to the experimental values. The energetically best geometry of Na55 is found to be a slightly distorted icosahedron. Received 16 April 1999 and Received in final form 6 July 1999  相似文献   

19.
Intracluster electron transfer and oligomerization reaction were investigated by mass spectrometry of clusters of alkali metal atom (M) with acrylonitrile (AN; CH2=CHCN). In the photoionization mass spectra of M(AN)n, magic numbers were clearly observed at n = 3k (k = 1-4 for M = Na and K, k = 1 for M = Li). The results of photodissociation of neutral K(AN)n indicate that the n = 3 cluster has an anomalous stability relative to other sizes of clusters. The C=C bond in vinyl molecules is also found to be necessary to form the magic numbers by measuring the photoionization mass spectrum of K atom with propionitrile. These results strongly support the intracluster anionic oligomerization reaction initiated by electron transfer from the alkali atom. The quantum chemical calculations have revealed that the evaporation induced by excess energy generated by intracluster oligomerization is important to form the magic numbers in the present clusters. Received 29 November 2000  相似文献   

20.
We have measured attenuation cross sections and fragmentation cross sections for protonated water clusters H(H2O)n + (n = 1 to 100) colliding with noble gas atoms (He and Xe) at a laboratory energy of 50 keV. In collisions with He, a transparency effect in the attenuation cross section was observed. For the case of fragmentation in collisions with Xe, a strong enhancement of small clusters was observed which we attribute to multifragmentation. Received 30 November 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号