首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
针对油类污染物成分复杂,光谱重叠难以识别的问题,提出采用三维荧光光谱结合组合算法对油类污染物进行了定性和定量分析。荧光光谱中存在的瑞利散射对三维荧光光谱检测有较大影响,提出了缺损数据修复-主成分分析(MDR-PCA)方法对矿物油三维荧光光谱的瑞利散射进行处理,原理是单个荧光光谱激发发射矩阵符合双线性,可用主成分分析(PCA)法来解析。MDR-PCA法首先将荧光数据中的散射干扰数据全部扣除,之后利用主成分分析(PCA)迭代过程对扣除数据进行重构修复后补全数据。该方法在消除散射干扰的同时充分利用了荧光物质光谱矩阵中的有效信息。利用不同浓度的矿物油的激发-发射荧光光谱构建了三维数据。样品数据来源于柴油、汽油和煤油三种溶质的四氯化碳溶液。常用于三维荧光光谱数据分析的三线性分解算法有平行因子分析(PARAFAC)、交替三线性分解(ATLD)和自加权交替三线性分解算法(SWATLD)等。PARAFAC基于严格意义上的最小二乘原则,具有抗噪声强、模型稳定、微小预期误差等优点,可以实现三维数据阵列的最佳拟合,但该算法收敛速度较慢,对组分数敏感。ATLD算法通过提取对角主元和切尾奇异值求解广义逆,极大提高了收敛速度并降低了对组分数的敏感度,从而实现三线性分解。然而,取对角元时易使ATLD方法对噪声敏感。SWATLD算法既继承了对组分数不敏感、收敛速度快等优点,又降低了噪声水平的影响。但是在抗共线程度方面, SWATLD算法在抵抗共线性程度方面的能力较ATLD略有降低。基于此,论文根据三线性分解算法迭代过程中损失函数的变化,对迭代过程进行划分,提出了三线性迭代方法的组合算法(algorithm combination methodology, ACM)—将ATLD, SWATLD与PARAFAC组合在一起,充分发挥各算法的优点,实现二阶校正算法的优势互补。采用ACM算法对两组分及三组分矿物油样品的三维荧光光谱数据进行解析,并对三种矿物油的回收率进行了计算。柴油的回收率为97.08%,汽油的回收率为97.34%,煤油的回收率为97.25%。解析光谱和回收率表明, ACM算法能够实现油类污染物的种类识别及浓度测量。  相似文献   

2.
三维荧光光谱技术与自加权交替三线性分解(SWATLD)算法相结合,对三类农药混合溶液进行检测。在乙腈溶剂中配制西维因、速灭威和三唑磷不同浓度比的混合溶液为测量样品(西维因、速灭威及三唑磷的最佳激发波长/发射波长分别为285/325,305/345和265/305 nm),利用荧光光谱仪获取样品的三维荧光光谱,经过空白扣除以及激发与发射校正,有效地去除仪器误差以及散射产生的影响,得到样品的真实光谱。采用基于自加权交替三线性分解算法对测得的光谱数据进行分析,得到的三种农药的平均回收率为96.9%±1.9%,99.8%±1.0%和100.8%±3.2%。根据SWATLD算法预测结果,计算三类农药的预测均方根误差(RMSEP)值为0.616×10-2,0.539×10-2和0.374×10-2 μg·mL-1,低于平行因子(PARAFAC)分析法预测结果的RMSEP值,且最低检测限均在0.005~0.022 μg·mL-1范围内。和PARAFAC算法相比较,突出了SWATLD算法的优势,表明该算法对光谱重叠严重的三类农药混合物有较好的分解能力。  相似文献   

3.
针对油类污染物成分复杂,光谱重叠难以识别的问题,提出采用三维荧光光谱结合组合算法对油类污染物进行了定性和定量分析。荧光光谱中存在的瑞利散射对三维荧光光谱检测有较大影响,提出了缺损数据修复-主成分分析(MDR-PCA)方法对矿物油三维荧光光谱的瑞利散射进行处理,原理是单个荧光光谱激发发射矩阵符合双线性,可用主成分分析(PCA)法来解析。MDR-PCA法首先将荧光数据中的散射干扰数据全部扣除,之后利用主成分分析(PCA)迭代过程对扣除数据进行重构修复后补全数据。该方法在消除散射干扰的同时充分利用了荧光物质光谱矩阵中的有效信息。利用不同浓度的矿物油的激发-发射荧光光谱构建了三维数据。样品数据来源于柴油、汽油和煤油三种溶质的四氯化碳溶液。常用于三维荧光光谱数据分析的三线性分解算法有平行因子分析(PARAFAC)、交替三线性分解(ATLD)和自加权交替三线性分解算法(SWATLD)等。PARAFAC基于严格意义上的最小二乘原则,具有抗噪声强、模型稳定、微小预期误差等优点,可以实现三维数据阵列的最佳拟合,但该算法收敛速度较慢,对组分数敏感。ATLD算法通过提取对角主元和切尾奇异值求解广义逆,极大提高了收敛速度并降低了对组分数的敏感度,从而实现三线性分解。然而,取对角元时易使ATLD方法对噪声敏感。SWATLD算法既继承了对组分数不敏感、收敛速度快等优点,又降低了噪声水平的影响。但是在抗共线程度方面,SWATLD算法在抵抗共线性程度方面的能力较ATLD略有降低。基于此,论文根据三线性分解算法迭代过程中损失函数的变化,对迭代过程进行划分,提出了三线性迭代方法的组合算法(algorithm combination methodology, ACM)—将ATLD, SWATLD与PARAFAC组合在一起,充分发挥各算法的优点,实现二阶校正算法的优势互补。采用ACM算法对两组分及三组分矿物油样品的三维荧光光谱数据进行解析,并对三种矿物油的回收率进行了计算。柴油的回收率为97.08%,汽油的回收率为97.34%,煤油的回收率为97.25%。解析光谱和回收率表明,ACM算法能够实现油类污染物的种类识别及浓度测量。  相似文献   

4.
为解决微含量石油类污染物识别问题,采用三维荧光光谱(EEMs)与平行因子(PARAFAC)相结合的技术,研究了石油类样品荧光组分特征及平行因子组分识别方法。依据水体中石油类含量的标准规定,配制出与Ⅰ—Ⅴ类水体对应的CCL4含油样品,用来模拟油类污染物成分。首先对97#汽油、0#柴油、普通煤油及CCL4溶剂进行三维荧光光谱扫描,得到纯组分样品的三维荧光光谱图,其次对97#汽油、0#柴油及普通煤油的标准样品进行三维荧光光谱图测定,最后对97#汽油、0#柴油、普通煤油在CCL4溶剂中的混合样品进行三维荧光光谱图测定。在掌握上述不同组分样品的三维荧光光谱特性的基础上,重点分析微含量下97#汽油、0#柴油及煤油混合液的三维荧光光谱,应用平行因子方法解析出样品中三种组分的激发与发射特征光谱以及组分间的浓度比。解决了混合样品荧光光谱出现叠加,用化学分离或单纯荧光分析方法较难识别荧光组分的问题,实现了对微含量含油混合样品的主要组分的识别,并得到混合样品溶液中不同组分间浓度比。  相似文献   

5.
油类污染物具有破坏海洋生态系统和间接污染大气及土壤的危害,快速、准确地检测污染物的成分及其浓度具有重要意义。由于油类污染物光谱重叠严重,因此难以通过传统荧光分析准确加以区分。本文基于激光诱导荧光技术,以氙灯作为激发光设计荧光光谱检测系统,并对0#柴油、92#汽油和煤油进行扫描和检测,从而获得激发/发射光谱以及最佳激发/发射波长。并对该系统的软件算法部分进行改进,运用Savitzky-Golay卷积平滑直接获得更加精确的激发/发射光谱,更能全面、准确地反映油类物质的荧光特性信息。并与传统的荧光光谱仪得到的光谱图进行对比,经实验验证激光诱导荧光技术的荧光光谱检测系统的有效性,对油类污染物的荧光光谱信号的检测具有更高的灵敏度。  相似文献   

6.
提出了一种以十二烷基硫酸钠(SDS)胶束溶液为溶剂增溶、增敏、增稳石油类物质的新方法。研究了石油类物质的荧光强度随SDS胶束溶液浓度的变化规律,确定了其溶剂SDS胶束溶液的最佳浓度为0.1 mol·L-1。使用FLS920荧光光谱仪测量得到不同稀释浓度的汽油、柴油、煤油SDS胶束溶液的三维荧光光谱矩阵(EEMs),分析了瑞利(Rayleigh)散射、拉曼(Raman)散射以及仪器光谱特性对测量光谱的影响,经过光谱校正,建立了三种油的SDS胶束溶液在激发波长为250~400 nm、发射波长为260~500 nm范围内的三维荧光光谱图,并确定了在一定浓度范围内荧光强度与浓度具有良好的线性关系。在相同条件下,用同样的方法配制各种浓度汽油、柴油、煤油水溶液作对比,验证了SDS胶束溶液作为石油类物质的溶剂可以使水中石油类物质的溶解度增加、荧光强度增大、稳定性更好,实现了石油类物质可以不依赖于某些有毒溶剂萃取,又解决了其水中溶解度低不宜定量的问题。  相似文献   

7.
为准确进行浓度检测,用Savitzky-Golay(SG)多项式曲面平滑法去除三维荧光光谱数据的冗余信息,分别采用平行因子法(PARAFAC)算法和交替惩罚三线性分解(APTLD)算法对光谱数据进行分解。设计多环芳烃类污染物的检测实验,分析了芴(FLU)、苊(ANA)及两者混合溶液的荧光光谱特性。FLU溶液在λ_(ex)/λ_(em)=302/322 nm处存在一个明显的荧光峰,并且存在连续侧峰。ANA溶液存在两个荧光峰,分别为λ_(ex)/λ_(em)=290/322 nm和λ_(ex)/λ_(em)=290/336 nm。在激发波长200~370 nm扫描范围和发射波长240~390 nm扫描范围内,FLU和ANA荧光光谱重叠严重。结果表明,两种算法均能分辨出FLU和ANA,并取得了很高的回收率,但APTLD算法的检测效果更好。  相似文献   

8.
基于温度变量的四维荧光光谱的石油类污染物测定   总被引:1,自引:0,他引:1  
三维荧光光谱结合多元校正分析对石油类污染物复杂多组分体系测定方法多谱图混叠,且易受到空白荧光和干扰物荧光影响降低了测定准确性。提出在三维荧光光谱中增加一维温度信息构造激发波长-发射波长-温度-样品(EEM-temperature data array)的四维荧光光谱数据阵列,应用四线性成分模型建立高维荧光光谱定性定量分析的方法。实验证明在15~25 ℃温度范围内,矿物油荧光光谱轮廓形状不随温度变化,而其强度随温度线性变化,满足四线性要求,这为构建四维荧光光谱发展高维数据的三阶校正提取更丰富的有效信息提供了可能。三阶校正不仅可以在干扰物共存的情况下对感兴趣组份进行定量测定,即具有“二阶优势”,还具有更高的选择性和灵敏性,可以对高共线性和背景干扰的重叠光谱表现更好的解析能力,即“三阶优势”。对0#柴油、97#汽油和机油为混合油待测组分,腐殖酸为水体干扰组分组成的复杂体系污染油样品为进行实验,得到的三维荧光光谱利用平行因子(PARAFAC)算法和交替惩罚三线性分解(APTLD)算法进行二阶校正分析,将三维荧光光谱在温度方向上堆叠构成增加温度维度的四维荧光光谱数阵,并将其利用四维平行因子算法(4-PARAFAC)和交替惩罚四线性分解(APQLD)算法进行三阶校正分析,比较,0#柴油、97#汽油和机油的预测结果表明增加了影响荧光光谱的温度因素构造的四维荧光光谱提高了有效信息提取能力,四维荧光光谱结合高阶校正算法能提高油种光谱识别和浓度精确检测,较传统的三维荧光光谱分析提高了回收率(recovery rate)和预测均方根误差(root mean square error of prediction,RMSEP),有利于石油类污染物的有效,准确,实时,绿色环保检测。同时指出了4-PARAFAC和APQLD算法各自的特点及其不同适用环境,为油类污染物检测具体情况提供算法选择依据。引入温度参量的四维荧光光谱结合三阶校正算法的检测技术较三维荧光光谱技术,在组分光谱定性分辨和浓度定量检测方面能对复杂体系油类污染物实现快速有效,绿色无污染地检测,实现“数学分离”更有效代替“化学分离”。  相似文献   

9.
酚类化合物对动植物机理有着严重危害,利用三维荧光光谱结合交替惩罚三线性分解(APTLD)算法,完成了不含干扰物和干扰物共存时激发-发射荧光光谱重叠严重的麝香草酚、对苯二酚和苯酚的直接快速准确定性、定量分析。研究了温度对三种酚类化合物荧光强度的影响。对扫描所得激发-发射矩阵信号(EEM)进行二次去散射和光谱校正预处理,最大程度保留了原光谱信息,避免光谱严重失真。将APTLD算法与平行因子(PARAFAC)和交替三线性分解(ATLD)算法进行对比,突显该算法的优势。实验得出,APTLD算法能够较好的解析荧光光谱数据的重叠峰,分别得到三种目标分析物的荧光光谱,实现快速定性分析;定量分析时平均回收率为(97.4±4.5)%~(103.1±3.0)%;预测均方根误差(RMSEP)低于1.664×10-2 μg·mL-1,且检测限低于国家标准;处理过程简洁快速,为水环境中酚类化合物实现现场检测和在线实时监测提供了有力依据。  相似文献   

10.
报道了曲通X-100(TX)水溶液的荧光光谱与荧光量子产率。实验发现,在强酸性条件下,TX没有荧光,当pH >1时,TX有稳定的强荧光,荧光激发波长为229和275 nm,发射波长为302 nm。TX水溶液可产生共振荧光,共振荧光峰位于285 nm。在0.1~90 mg·L-1浓度范围内,TX荧光强度与浓度之间存在线性关系,检测限为0.1 mg·L-1。以L-色氨酸为参比,测得在激发波长280 nm处TX水溶液的荧光量子产率为0.121。  相似文献   

11.
王玉田  赵煦  潘钊  苑媛媛 《发光学报》2016,(11):1436-1443
石油是一种成分复杂的混合物,通过常规的检测方法很难对其进行定性识别。本文用汽、煤、柴油的混合物来模拟环境中的油类污染物。汽、煤、柴油在特定波长范围的激发下可以发出含有物质自身信息的荧光,根据朗伯-比尔定律可知荧光强度与物质浓度成正比,利用该性质对特定物质进行识别。通过FS920稳态荧光光谱仪对样本进行测量,将实验所得的三维数据拓展为五维数据,提出了一种将展开偏最小二乘耦合到残差四线性的五维数据处理方法,同时采用五维平行因子法和该算法分解数据,实现了对汽、煤油的定量分析,并恢复出了其激发和发射光谱。结果表明,展开偏最小二乘法的分析效果更好。  相似文献   

12.
对三维荧光光谱法测定水中氯苯(简称CB)进行了研究.研究表明,CB的三维荧光谱图只有一个荧光峰,该峰位于激发波长(λex)210~240 nm、发射波长(λem)330~370 nm范围内.当CB溶液浓度为0.002~0.05 mg·L-1时,λex/λem为225/340 nm处荧光强度最大.在此波长处,荧光强度与浓度呈很好的线性相关,相关系数为0.999 67,表明三维荧光光谱法可用于定量分析水中的CB.该方法在置信水平为90%时的检出限为3.68×10-6mg·L-1,标准偏差为0.04%.  相似文献   

13.
提出了一种光谱重叠的多种矿物油混合物组分含量测定的新方法。将偏最小二乘方法(PLS)推广至三维扩展(tri-PLS),不需要解决特征值问题。利用该方法对柴油、汽油和煤油混合物的三维荧光光谱进行研究,根据样本序列、激发波长、发射波长构造出三维数据矩阵,结合浓度矩阵应用tri-PLS法建立校正模型,对实验样本进行预测,实验结果表明tri-PLS方法的建模精度比常用的平行因子法优越。  相似文献   

14.
三种酚类化合物的三维荧光光谱特性研究   总被引:1,自引:0,他引:1  
三维荧光光谱技术通过在不同激发波长下扫描发射光谱获得荧光强度变化信息,由于其灵敏度高,选择性好,被广泛用于环境中污染物的监测。利用该方法研究3种酚类化合物的荧光光谱特性,在激发波长为240~360 nm,发射波长为260~500 nm范围内,确定了苯酚、间甲酚和麝香草酚的荧光峰位置分别为272/300,274/300和276/304 nm。由于3种酚类物质为同系物,结构相似,因此得到的激发光谱和发射光谱在形状上极为相似。工作液浓度在0.02~1.0 mg·L-1范围内,3种酚类物质的浓度与荧光强度之间均呈现较好的线性关系,且检出限达到1 μg·L-1。实验结果表明,用三维荧光光谱法可对3种酚类化合物进行定性和定量分析。  相似文献   

15.
没食子酸(GA a),学名为3,4,5-三羟基苯甲酸(分子式为C 7H 6O 5),通常以水合物的形式存在,作为一种重要的有机原料,广泛的存在于植物中。有研究证明GA a具有抗氧化、抗炎、抗肿瘤、抗病毒、抗突变等多种作用。因此GA a常作为抗氧化剂添加于化妆品中。对羟基苯甲酸(p-HA),分子式为C 7H 6O 3,其中的R基为甲基、乙基、丙基、丁基或庚烷基时分别称为对羟基苯甲酸乙酯、对羟基苯甲酸丙酯、对羟基苯甲酸丁酯和对羟基苯甲酸庚酯。p-HA酯类的抗菌性强、毒性低、抑菌作用不受pH影响,因此常添加于化妆品及药物中用作防腐剂。间苯二酚(RE)又称1,3苯二酚或间二苯酚(分子式为C 6H 6O 2)。RE具有杀菌作用,可作为防腐剂添加于化妆品中。以没食子酸(GA a)、对羟基苯甲酸(p-HA)和间苯二酚(RE)三种化妆品常用添加剂为目标分析物,通过引入第四维—溶剂,构建四维荧光光谱数据,使用甲醇(光谱级)、乙醇(光谱级)、超纯水分别获得三组实验样本,三组样本的配置方法与加入药品量相同。使用FS920稳态荧光光谱仪对样本进行检测,设置激发波长为210~330 nm,间隔4 nm记录一个数据;发射波长为280~480 nm,间隔2 nm记录一个数据。初始发射波长总是滞后激发波长10 nm,由此可消除一级瑞利散射的干扰。随后使用空白扣除法对初始荧光数据进行预处理,去除了溶剂的拉曼散射。最后,采用核一致诊断法确定待测样本的组分数为3,使用交替加权残差约束四线性分解(alternating weighted residual constrained quadratic decomposition,AWRCQLD)算法对预处理后的三维荧光光谱数据进行分解。结果表明,AWRCQLD算法分解得到GA a、p-HA和RE的激发、发射光谱图与目标光谱几乎重叠,能实现光谱重叠严重的GA a、p-HA和RE的快速定性和定量分析。  相似文献   

16.
不同波长激发光对血清荧光光谱影响的实验研究   总被引:2,自引:0,他引:2  
采用日本岛津荧光光度计RF5301,研究了血清的荧光光谱与激发光波长的关系。实验结果表明:在不同波长的紫外光激励下,血清产生的荧光光谱线型及峰值波长基本相同,与激励光波长无关,但荧光峰强度随激励光波长变化而变化。血清的荧光光谱有两个较强的荧光发射区,其中第一个发射区处于300~410 nm,第二个发射区处于410~530 nm。当激发光波长小于310 nm,荧光主要集中在第一发射区,荧光峰位于330和370 nm处,并产生竞争现象。当激发光波长大于250 nm时,只出现330 nm处的荧光峰,其最佳激励光波长为300 nm;当激发光波长大于320 nm,第一发射区的荧光变弱,在第二发射区的荧光变强,荧光峰位于452 nm。此研究为血液的光谱特性研究提供了实验依据,对光诱导荧光光谱诊断技术中激发光波长的选择具有一定的参考价值。  相似文献   

17.
矿物油-乙醇溶液三维荧光光谱的实验研究   总被引:4,自引:0,他引:4  
研究了矿物油-乙醇溶液的三维荧光光谱特性。通过空白扣除法消除了乙醇的拉曼散射对矿物油三维荧光光谱的影响,而采用将瑞利散射及其附近区域置零的方法去除了瑞利散射对矿物油三维荧光光谱的影响。经校准,矿物油的三维荧光光谱特征荧光峰表现为:煤油主要为一个宽峰,最大激发/发射荧光峰的位置在270/290 nm附近;0#柴油有两个峰,最大激发/发射峰分别位于240/344 nm和270/362 nm附近;润滑油存在多个荧光峰,其中两个比较强的最大激发/发射峰分别位于240/348 nm和258/358 nm附近。此外,还研究了矿物油的荧光光谱强度与浓度的关系,并对测量的灵敏度和检测限进行了分析。研究表明,利用三维荧光光谱特征测量可以实现低浓度矿物油的测定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号