首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
在乙醇溶液中以邻菲咯啉(phen)、2,2’-联吡啶(bipy)和对氨基马尿酸(PAH,HL)为配体与铽离子(Tb(Ⅲ))合成了二元和三元稀土配合物。通过元素分析、差热-热重分析、紫外光谱、红外光谱分析,确定了配合物的组成为TbL3(1)、TbL3·phen·H2O(2)和TbL3·bipy·H2O(3),并讨论了配合物1~3的谱学性质和荧光性能。推测出羧基中的氧原子以桥式双齿的形式与稀土离子配位。由红外光谱和热分析测试确定的配合物1及配合物2中的水分子未参与配位。研究表明,铽配合物在489,583和621 nm处出现发射峰,它们分别归属于5D4→7F6,5D4→7F5,5D4→7F4和5D4→7F3的跃迁。其中544 nm处5D4→7F5跃迁的强度最强,配体的共平面性和共轭性越大,配合物的荧光性能越高,三元配合物TbL3·phen·H2O和TbL3·bipy·H2O的荧光强度优于二元配合物TbL3的荧光强度。  相似文献   

2.
均苯三甲酸Eu-Tb配合物的合成及荧光性质研究   总被引:1,自引:0,他引:1  
以H3BTC为配体,用水热法合成了均苯三甲酸Eu-Tb系列发光配合物Eu1-xTbx BTC·nH2O(H3BTC=1,3,5-均苯三甲酸,x=0,0.1,0.3,0.5,0.7,0.9,1.0;n=0, 0.5),通过化学分析及元素分析确定了配合物的组成,用红外光谱对其进行了表征;研究了配合物的激发光谱和发射光谱,并就其荧光强度与两种稀土离子含量之间的关系进行了讨论。结果表明:(1)该系列配合物(除纯均苯三甲酸Tb外)均发出Eu离子的特征荧光,而荧光强度随着Eu和Tb离子的不同发生了明显变化,发射峰位置基本不变;(2)系列配合物中Tb对Eu的荧光强度有敏化作用,Eu对Tb的荧光强度有猝灭作用;同时Eu离子的5D0→7F1和5D0→7F2跃迁发射强度较强,且均劈裂为两个峰(587,593 nm)及(611.2,618 nm),这是由于Eu离子所处的配位环境不同所引起的。  相似文献   

3.
水热法合成了新的配位聚合物,[Eu(2-stp)(2,2’-bipy)(H2O)]·H2O (2-stp=2-磺酸对苯二甲酸根,2,2’-bipy=2,2’-联吡啶)。通过X-射线单晶衍射确定了该配合物的晶体结构。该配合物为一维平行双链结构。Eu3+与2-磺酸对苯二甲酸根的六个氧原子,2,2’-联吡啶的两个氮原子和一个水分子配位。对该配合物进行了荧光性质的研究,发射光谱中出现了Eu3+的五个特征峰,分别位于581,594,619,654和698 nm,对应于Eu3+的5D0→7FJ (J=0~4)跃迁。位于619 nm的最强发射峰是由5D0→7F2跃迁产生的。不同有机溶剂对该配合物荧光强度有不同程度的影响,苯甲醛对该配合物具有显著的荧光猝灭效应,故该配合物可作为苯甲醛的荧光感应探针。  相似文献   

4.
合成了新的配体安息香缩苯胺和新的铕配合物Eu(BZA)3phen,并用元素分析(EA),IR,1H NMR和UV对配合物进行了表征;配合物Eu(BZA)3phen在波长310 nm激发下,发出以铕的特征发谢谱线612 nm左右为主的强荧光,对应跃迁为5D0→7F2;安息香缩苯胺对铕离子具有敏化作用,是铕配合物的良好配体。  相似文献   

5.
以两种不同结构的羧酸苯乙酸和苯基羟基乙酸与氯化铽为原料,采用低温固相反应合成了两种羧酸铽配合物。经元素分析、稀土络合滴定、摩尔电导确定了配合物的组成为: Tb(L1)3·H2O,Tb(L2)3·4H2O(L1= C6H5 CH COO- ,L2=C6H5CH(OH)COO-)。测定了配体及配合物的IR谱、1H NMR及配体的磷光光谱和铽配合物荧光激发和发射光谱。根据磷光发射光谱数据计算了配体的三重态能级值。比较两个配合物的荧光发射主峰5D4→7F5强度: 苯基羟基乙酸铽为苯乙酸铽的5倍。由此可见在配体亚甲基上引入拉电子基团羟基,将会扩大共轭体系π电子的离域范围,提高能量传递效率,提高稀土离子的发光强度。  相似文献   

6.
以金属Au-Al为催化剂,在温度为1 100 ℃,N2气流量为1 500 sccm、生长时间为30 min,从Si(100)衬底上直接生长了直径约为50~120 nm、长度为数百纳米的高密度、大面积的Si纳米线。然后,利用Tb2O3在不同温度(1 000~1 200 ℃)、掺杂时间(30~90 min)和N2气流量(0~1 000 sccm)等工艺条件下对Si纳米线进行了Tb掺杂。最后,对Si(100)衬底进行了Tb掺杂对比。室温下,利用荧光分光光度计(Hitachi F-4600) 测试了Tb掺杂Si纳米线的光致发光特性。实验研究了不同掺杂工艺参数(温度、时间和N2气流量)对Tb3+绿光发射的影响。根据Tb3+能级结构和跃迁特性对样品的发射光谱进行了分析。结果表明,在温度为1 100 ℃,N2气流量为1 500 sccm、时间为30 min等条件下制备的Si纳米线为掺杂基质,Tb掺杂温度为1 100 ℃,N2气流量为1 000 sccm、光激发波长为243 nm时,获得了最强荧光发射,其波长为554 nm(5D4→7F5),同时还出现强度相对较弱的494 nm(5D4→7F6),593 nm(5D4→7F4)和628 nm(5D4→7F3)三条谱带。Tb掺杂的体Si衬底在波长554 nm处仅有极其微弱的光致发光峰。  相似文献   

7.
NaYF4∶Eu3+, Tm3+, Yb3+材料中Stokes和反Stokes发光研究   总被引:1,自引:0,他引:1  
合成了Eu3+,Tm3+和Yb3+掺杂的NaYF4材料。360 nm光激发呈蓝色发光,峰值位于452 nm,对应Tm3+的1D2→3F4跃迁;395 nm光激发呈橙色发光,峰值位于591 nm,对应Eu3+的5D0→7F1跃迁;409 nm光激发呈红色发光,峰值位于613 nm,对应Eu3+的5D0→7F2跃迁;980 nm光激发呈蓝色和红色发光,发光峰位于474和646 nm。蓝光来源Tm3+的1G4 →3H6跃迁,红光来源Tm3+的1G4→3F4跃迁。在双对数曲线中,蓝光474 nm和红光646 nm的斜率分别为2.1和2.4,在980 nm光激发下,蓝光和红光发射都是双光子过程。还研究了材料的吸收光谱,并利用X射线衍射,扫描电镜测试了材料的物相结构和微观形貌。结果表明:NaYF4∶Eu3+, Tm3+, Yb3+材料具有较规则的六方相结构,结晶良好。  相似文献   

8.
采用水热法合成了两个稀土配合物[Tb(3-SBA)(IP)OH(H2O)]·H2O (1)和[Tb(dpdc)1.5(IP)(H2O)]n(2)(3-SBA=3-羧基苯磺酸根,dpdc=2,2′-联苯二甲酸根,IP=1H-咪唑[4,5-f][1,10]-邻菲啰啉),并用X-ray单晶衍射仪测定了它们的晶体结构。配合物1是由3-羧基苯磺酸根和羟基交替连接Tb(Ⅲ)离子形成的一维链。配合物2是由2,2′-联苯二甲酸根桥联Tb(Ⅲ)离子形成的一维链。配合物1与2在紫外灯下均发出强的绿色荧光,其荧光光谱中有四个发射峰,位于492,544,584和619 nm,分别对应于Tb(Ⅲ)离子的5D4→7FJ(J=6-3)跃迁,其发射光谱中均不存在配体荧光。配体吸收紫外光,有效地转移能量给Tb(Ⅲ)离子。配合物1与2中Tb(Ⅲ)离子的5D4发光显示了单指数衰减,寿命分别为0.287和0.439 ms,发光量子产率分别为9.28%和7.07%。  相似文献   

9.
以均苯三甲酸(H3BTC)为配体,用水热法合成了系列稀土掺杂发光配合物,通过元素分析,EDTA滴定,红外光谱等确定了其组成为Tb(1-x)LnxBTC·0.5H2O(Ln=Y,Gd,x=0,0.1,0.3,0.5,0.7,0.9)。研究了配合物的荧光性质。该类配合物均能发出Tb3+的特征荧光,并且不发光的Y3+和Gd3+的掺入使配合物的荧光强度得到了增强,这可能是由于分子内能量传递的结果。Tb3+受到敏化作用而使荧光增强,但发射峰的位置基本上没有发生变化。在Tb3+的4个发射峰中5D4→7F5(544nm)处的发射峰强度最强,并在此条件下确定了掺杂离子的最佳掺入量,当Tb3+∶Y3+=0.5∶0.5, Tb3+∶Gd3+=0.3∶0.7时Tb(1-x)LnxBTC·0.5H2O(Ln=Y,Gd)的荧光强度最强。同时发现在最佳掺入量条件下Gd3+对Tb3+的敏化程度大于Y3+对Tb3+的敏化程度。  相似文献   

10.
以六水合硝酸铽和六水合硝酸铕,3-甲基-1-乙酰基-5-(2-羟基苯基)-4,5-二氢吡唑(HL),1,10-邻菲罗啉和三苯基氧磷(TPPO)合成了TbL3·2H2O,TbL2(phen)·H2O,TbL2(TPPO),EuL3·2H2O,EuL2(phen)·2H2O,EuL2(TPPO)·2H2O 6个固体配合物。用元素分析,红外光谱,荧光光谱对配合物进行了组分确定和结构表征。IR表明,自由配体HL与稀土离子配位后,位于1644 cm-1处的νCC发生移动,相应的νCN振动吸收峰降到了1 600 cm-1,结合元素分析等其他表征说明HL和稀土离子发生配位。室温下测定了配合物的荧光激发光谱和发射光谱,激发光谱表明配合物EuL2(Phen)·2H2O和TbL2(Phen)·H2O的最佳激发波长分别为310和320 nm, 在此激发波长下扫描发射光谱,EuL2(Phen)·2H2O和TbL2(Phen)·H2O相对荧光强度最强,第二配体phen对Eu3+和Tb3+离子的荧光发射强度有明显的增强作用。  相似文献   

11.
双酰胺配体铕和铽混合固态配合物的光谱研究   总被引:1,自引:1,他引:0  
在氯仿和乙酸乙酯溶液中合成了以1,6-二[(2’-苄胺甲酰基)苯甲氧基]己烷(L)为配体的硝酸铕和硝酸铽配合物,以及不同摩尔比的铕和铽的共沉淀配合物,又按不同的摩尔比将单一的硝酸铕和硝酸铽配合物通过研磨混合,得到混合固态的铕铽配合物。通过元素分析、红外光谱、紫外光谱、XPS 光电子能谱对配合物进行了表征,结果表明:单一稀土硝酸盐与配体形成的是2∶3型的配合物;所有的配合物都具有相似的配位结构;与单一稀土配合物相比,相同摩尔比的混合配合物的紫外吸收有所降低;混合配合物中发生了一定的化学键合作用,电子结合能有变化。通过荧光光谱对这些配合物的荧光性质进行了详细的研究, 表明与单一的铕和铽配合物相比,两种混合固态配合物无论是荧光发射峰位还是荧光强度均发生了明显变化,铽对铕的荧光强度有很强的敏化作用,铕对铽的荧光强度有猝灭作用。在紫外灯的照射下,共沉淀配合物的荧光颜色随着摩尔比的变化呈现有规律的变化。  相似文献   

12.
以硝酸铕、2-(4-氟代苯甲酰基)苯甲酸(HL)、1,10-菲咯啉(Phen)和三苯基氧膦(TPPO)合成了EuL3(H2O)6,EuL3Phen(H2O)4和EuL3(TPPO)(H2O)5三种固态配合物。用元素分析、红外光谱、核磁共振氢谱对配合物进行了组分确定和结构表征。IR表明,2-(4-氟代苯甲酰基)苯甲酸与Eu3+形成配合物后,位于1 692 cm-1处羧基的νCO峰消失,2 500~3 200 cm-1处羧基的νO—H峰也消失,出现了羧酸盐特有的反对称伸缩振动吸收峰(νas(CO-2))和对称伸缩振动吸收峰(νs(CO-2)),且Δν(νas(CO-2)-νs(CO-2))与钠盐的Δν相近,说明羧酸根与Eu3+以对称双齿桥式配位。在1H NMR中,形成配合物后第一配体苯环上的质子峰变为宽峰且移向高场,Phen和TPPO中质子化学位移移向低场。室温下测定了配合物的荧光激发光谱和发射光谱,激发光谱表明配合物EuL3(H2O)6,EuL3Phen(H2O)4和EuL3(TPPO)(H2O)5的最佳激发波长分别为353.0,355.0和357.0 nm;发射光谱均显示Eu3+离子的特征发射光谱,且表明Phen对Eu3+离子的荧光发射有明显增强作用。  相似文献   

13.
基于吸收及荧光光谱技术对一种新型铕的有机配合物发光材料在不同状态下的光谱特性进行了表征,并分析了该配合物的光物理特性与机理。发现该配合物的吸收光谱主要是配体邻菲咯啉(phen)的贡献;随着浓度增大自短波到长波区域逐渐出现了饱和吸收现象,光谱向长波方向延伸、展宽,而且这种特征在样品的激发光谱上得到了体现;该配合物在不同状态下的荧光光谱均由Eu3+的4个特征荧光峰组成,且出现617 nm强荧光峰。提出该配合物的荧光光谱主要是在配体乙酰苯胺的微扰或介导作用下,改变了Eu3+能量场的宇称态,导致跃迁概率大大增强,并使配体phen将吸收的能量转移给Eu3+,发出617 nm强荧光峰。表明这种新型铕的有机配合物是一种有效的红光有机发光材料,具有潜在的应用价值。  相似文献   

14.
稀土上转换荧光材料和金属有机框架配合物是材料学、化学等学科近年来的两大研究热点,引起了广泛的研究关注。其中,基于稀土元素Nd3+的配合物是目前较为普遍的上转换荧光材料。文章表征了通过溶剂热法合成的稀土有机框架配合物Nd(BTC)的吸收和荧光等光谱性能,发现在808 nm的激光激发下,Nd(BTC)的荧光峰位于1 064 nm左右;在580 nm的激光激发下,获得了位于450 nm左右的上转换荧光峰,其上转换发光机理可归结于激发态吸收和能量传递上转换。上述结果表明,该框架配合物可作为一种上转换发光材料,有望应用于生物荧光标记、荧光显示等多个领域。  相似文献   

15.
利用高光谱植被指数估测苹果树冠层叶绿素含量   总被引:8,自引:0,他引:8  
叶绿素含量是反映植物生长状况的重要参数。利用ASD FieldSpec 3光谱仪,测定春梢停止生长期苹果冠层高光谱反射率,对原始光谱进行微分变换,与苹果叶绿素含量进行相关分析确定敏感波段,通过分析敏感区域400~1 350 nm范围内所有两波段组合的植被指数,选择最佳植被指数并建立苹果冠层叶绿素含量估测模型。结果表明:(1)苹果冠层叶绿素含量的敏感波段区域为400~1 350 nm。(2)利用筛选得到的植被指数CCI(D794/D763)构建的估测模型能较好的估测苹果冠层叶绿素含量。(3)以CCI(D794/D763)指数为自变量的估测模型CCC=6.409+1.89R3+1.587R2-7.779R预测效果最佳。因此,利用高光谱技术能够较快速、精确的对苹果冠层叶绿素含量进行定量化反演,为苹果长势的遥感监测提供理论依据。  相似文献   

16.
新型苯基吡唑铱(Ⅲ)配合物的合成及光物理性能研究   总被引:1,自引:0,他引:1  
合成了4种新型铱配合物(ppz)2Ir(LX)(ppz=1-苯基吡唑,LX=2-(2’-羟基苯基)苯并噻唑(BTZ),2-(3’-甲基-2’-羟基苯基)苯并噻唑(3-MeBTZ),2-(4’-甲基-2’-羟基苯基)苯并噻唑(4-MeBTZ),2-(4’-三氟甲基-2’-羟基苯基)苯并噻唑(4-TfmBTZ)),并对其分子结构和光物理性能进行了表征。结果表明,4种配合物的最大发光峰分布在583~615 nm,并都在400 nm左右出现一个弱发射带。400 nm的弱发射被认为是金属离子微扰的辅助配体BTZ的单重态激子的辐射跃迁,长波段的光发射被认为是Ir(BTZ)的3MLCT三重态激子的辐射跃迁。而Ir(ppz)2的3MLCT的三重态激子在室温下被猝灭。最强激发带位于250~310 nm,表明这些配合物的发射主要源于ppz和BTZ配体的跃迁,而不是3MLCT跃迁。与Ir(ppz)3相比,不仅实现了室温磷光,也通过第二配体的修饰实现了对发光颜色的调制。  相似文献   

17.
采用溶剂热法合成出单核Zn(Ⅱ)配合物[Zn(2,6-PDA)(phen)H2O]·H2O (1)和双核Cu(Ⅰ)配合物{[Cu(μ-Ⅰ)(phen)H2O]·H2O}2 (2) (2,6-H2PDA=2,6吡啶二甲酸,phen=1,10-邻菲罗啉),通过单晶结构测试、元素分析和红外吸收光谱对结构进行表征,并研究了两种配合物在二甲基亚砜(DMSO)中及固态时的荧光光谱及DMSO溶液中紫外可见吸收光谱。配合物1和2的最大吸收峰分别出现在253和242 nm附近,相比于配体吸收峰均发生红移,在1和2中,主要呈现出中心金属离子微扰的phen的π→π*的跃迁,且吸收强度强于phen,说明中心金属离子与phen配位后,增加了有机配体在紫外区的吸收,利于配体对能量的吸收。1在DMSO溶液中的荧光发射峰位于361,379和392 nm,在固态时的荧光发射峰为407,434和467 nm,2在DMSO溶液中的荧光发射峰出现在422,443和461 nm,固态时荧光发射峰在442,469,501 nm,均呈现蓝光发射。配合物1和2的固态荧光发射光谱与相应的DMSO溶液中的发射峰相比分别红移55和23 nm,这是由于在固态时配合物1和2的分子中的π—π堆积相互作用和分子间的相互作用,特别是配合物2中存在强烈的Cu(Ⅰ)…Cu(Ⅰ)相互作用,降低了体系前线轨道之间的能量差。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号