首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
西北盐碱土理化性质的高光谱建模及预测(英文)   总被引:1,自引:0,他引:1  
高光谱数据具有光谱分辨率高、波段连续性强、信息丰富等特点,在土壤信息的监测中得到广泛应用。利用高光谱遥感技术测定盐渍化土壤属性对灌区农作物的生长和农业可持续发展具有重要意义。采集玛纳斯河流域221个土壤样品,分别测定土壤电导率(EC)、有机质(SOM)和Na~+,Ca~(2+),Mg~(2+)三种离子浓度含量等土壤理化性质和光谱反射率曲线,并由三种离子含量得出钠吸附比值(SAR),采用逐步线性回归方法建立EC,SOM和SAR与原始光谱反射率(R)、标准正态变量(SNV)、归一化差异植被指数(NDVI)、倒数的对数(LR)、一阶微分(FDR)和去包络线(CR)等六种指标的模型。模型验证结果表明,相较其他五种变量的模型,以R为自变量的EC对数模型精度最高,相关系数为0.782,均方根误差为0.256。以NDVI为自变量的土SOM预测模型精度最高,相关系数为0.670,均方根误差为5.352。以FDR为自变量的SAR预测模型精度最高,相关系数为0.647,均方根误差为1.932。EC预测模型效果最好,SOM预测模型次之,SAR预测模型精度最低。最优模型中EC,SOM和SAR的敏感波长分别分布于395~1 801,352~1 144和394~1 011nm波段。由于土壤中各属性的差异和不同成分空间分布的变异性,对于不同土壤性质的建模和验证结果差异较大。本研究可为盐渍化土壤的高光谱遥感监测提供依据。  相似文献   

2.
实测高光谱和HSI影像的区域土壤盐渍化遥感监测研究   总被引:3,自引:0,他引:3  
通过典型研究区不同盐渍化土壤光谱反射率数据的变换和分析,选择与土壤含盐量响应敏感波段,建立实测高光谱土壤含盐量反演模型,以校正HSI影像建立的土壤含盐量反演模型。结果表明:实测高光谱土壤含盐量反演模型与HSI影像土壤含盐量反演模型均有较好的精度,模型判定系数(R2)均高于0.57,且模型稳定性较好。校正后的HSI影像土壤含盐量反演模型,模型判定系数有了较大提高,R2从0.571提升至0.681,且通过了0.01的显著性水平,均方根误差(RMSE)值为0.277。模型能够较好地提高区域尺度条件下土壤盐渍化监测精度,运用此方法开展盐渍化土壤定量遥感监测是可行的。  相似文献   

3.
典型半干旱区土壤盐分高光谱特征反演   总被引:12,自引:0,他引:12  
选取陕北典型半干旱区为研究对象,利用土壤高光谱特征对盐分进行反演研究。在研究区域选取样点,采集土壤样品测定土壤光谱特征,以土壤反射率(R)、反射率对倒数(Log(1/R))及去包络线的反射率(Rcr)三个光谱特征进行土壤盐分反演研究,分析其与土壤盐分的相关性,遴选特征波段,并通过Matlab编程利用最小偏二乘回归方法(partial least squares regression,PLSR)建立土壤盐分定量反演模型,然后利用检验样点进行精度检验和比较。结果表明,利用经包络线去除后光谱反射率进行定量反演的均方根预测误差最小(1.253<1.367<1.575),其预测精度最高;利用土壤高光谱特征进行盐分反演的预测值与实测值相关性良好(r2=0.761),趋势线接近于y=x。总之,研究发现,土壤反射率经过包络线去除后,利用偏最小二乘回归方法建立的反演模型具有良好的精度,这将有利于提高土壤盐渍化的监测效率。  相似文献   

4.
考虑含水量变化信息的土壤有机质光谱预测模型   总被引:2,自引:0,他引:2  
地物高光谱技术已被用于土壤有机质(SOM)等理化参数速测,但由于含水量、粗糙度等因素的影响,基于遥感影像的SOM空间反演精度较低。为此引入时相信息,将时像信息与光谱信息结合对研究区SOM进行预测,使预测模型精度显著提高。以黑龙江典型黑土区(北安市南部、海伦市中部、绥化市东部、绥棱县西南部、望奎县中部)为例,获取多期MODIS影像,利用MODIS数据高时间分辨率的优势,研究含水量对土壤反射光谱曲线的影响;基于SOM与含水量对反射率的综合作用分析,建立SOM遥感预测模型。结果表明:(1)利用单期影像建立的SOM光谱预测模型,未加入含水量变化对土壤反射光谱曲线的影响信息,基于年积日(DOY)117,119,130,140,143单期影像建立的SOM预测模型,RMSE分别为0.591,0.522,0.545和0.553,R2分别为0.505,0.614,0.562,0.568和0.645,模型精度及稳定性较低;(2)利用年积日119和143多时相影像建立的SOM预测模型,考虑了含水量与SOM的综合作用,RMSE为0.442,R2为0.723,模型精度、稳定性得到显著提高。研究成果对于区域土壤肥力评价、土壤碳库储量估测、精准农业发展有重要意义。  相似文献   

5.
亚热带土壤铬元素的高光谱响应和反演模型   总被引:6,自引:0,他引:6  
高光谱遥感技术已成为当前遥感领域的前沿技术,因其高分辨率的特点,可利用地物反射光谱特征定量反演地物的物理化学性质。目前土壤环境质量愈来愈受到关注,土壤重金属含量与土壤环境质量安全密切相关,以往土壤高光谱遥感技术研究多注重于土壤有机成分如土壤碳氮的光谱反演模型,对土壤重金属含量的高光谱反演研究普遍较少。土壤重金属污染已经成为影响土壤质量安全的关键因素,对土壤重金属尤其是污染元素普查是当务之急。传统土壤重金属的测试方法要求条件较高,测试周期较长,试图建立土壤高光谱与土壤铬元素(ICP-MS测定)含量之间的定量预测模型,以实现土壤铬元素的快速准确预测。采集福州市土壤样品135个,对土壤样品在350~2 500 nm的光谱反射率进行倒数、对数、微分等六种变换,筛选出对土壤总铬含量敏感的光谱波段,最后获得福州土壤铬元素高光谱反演优化模型。研究结果表明:亚热带红壤总铬的敏感光谱波段为:可见光520~530 nm和近红外1 440~1 450,2 010~2 020,2 230~2 240 nm;亚热带地区土壤总铬—高光谱反演的优化模型为: y=120.768e-7.037x(相关系数R为0.568,均方根误差为0.619 μg·g-1,检验相关系数R为0.484,均方根误差为1.426 μg·g-1),该模型可以用于福州地区土壤全铬的光谱快速监测。  相似文献   

6.
不同干扰程度的盐渍土与其光谱反射特征定量分析   总被引:4,自引:0,他引:4  
通过对新疆阜康500水库下游的盐渍化土壤实地定点取样和光谱测量,利用光谱变换、相关分析等方法,定量探讨了不同人为干扰程度的土壤盐分、水分与光谱反射率之间的关系,并建立了土壤反射光谱与盐分含量之间的多元线性回归预测模型。结果表明:(1)人为干扰程度与土壤盐分呈极显著正相关,而与土壤水分呈极显著负相关,相关系数分别为0.961和-0.929。(2)在不同干扰程度与土壤光谱反射率的关系中,重度干扰的土壤反射率比轻度干扰土壤的反射率高10%,比未干扰高17%。这是由于人为干扰破坏了土壤表面的少量植被及生物、物理结皮,土壤表层因缺乏保护,水分会迅速蒸发,并将土壤下部的盐分带到上部,加之降水稀少,盐分在表层聚集。干扰程度越高,结皮破坏越严重,土壤积盐越多,反射率越高。(3)随干扰程度的不断增加,土壤原始光谱反射率与盐分相关系数的两个最大值逐渐向近红外波段偏移(999,876~979,1 182~1 370和1 900 nm),这预示着,在近红外区土壤光谱反射率对盐分含量更为敏感。(4)利用反射率R、反射率一阶导数R′、反射率R+水分分别建立了不同干扰程度的三类土壤盐分含量预测模型。综合R2和RMSE判断模型精度,在不同干扰程度下,同类型的土壤含盐量预测模型中,干扰程度越小,模型精度越高;而在相同干扰程度下,不同类型的土壤含盐量预测模型中,均以一阶导数R′建立的模型预测效果最优,R2均超过0.983。总体上,模型精度提高了5%~10%,表明原始光谱经过一阶导数变换处理,可以去除部分线性背景值的干扰,提高预测土壤含盐量的精度。  相似文献   

7.
棉花单叶黄萎病病情严重度高光谱反演模型研究   总被引:3,自引:0,他引:3  
对棉花单叶黄萎病病情严重度与原始及一阶微分光谱反射率、高光谱特征参数进行相关分析,构建病情严重度反演模型。结果表明:可见光和短波红外波段光谱反射率随病情严重度增加而增大,且可见光波段光谱反射率差异比短波红外波段更为显著。以红边面积为自变量的线性模型(r=0.669 6)及以波长694 nm处原始光谱反射率为自变量的对数模型(r=0.679 4)均能较好反演病情严重度。通过模型精度检验发现,以714 nm 处一阶微分光谱反射率为自变量的线性模型为病情严重度诊断的最佳模型,即y=-282.3x+3.811 2,该模型具有最大相关系数(拟合r=0.699 2,预测r=0.941 0),最小均方根误差(0.257 1)和相对误差(12.74%)。文章结果对深入研究棉花黄萎病遥感监测机理提供了理论依据,对利用高光谱遥感数据获取病害信息具有重要应用价值。  相似文献   

8.
连续小波变换高光谱数据的土壤有机质含量反演模型构建   总被引:9,自引:0,他引:9  
土壤有机质含量是反映土壤肥力的重要指标,对其进行动态监测是实施精准农业的重要措施。近年来,众多学者尝试采用土壤近地传感(proximal soil sensing),尤其是近地高光谱技术,在田间和实验室获取不同形态土壤的高光谱数据,不断引入新方法建立适用于不同地域和不同土壤类型的有机质含量的反演模型。该研究在实验室内利用ASD FS3采集了土壤高光谱数据,采用“重铬酸钾-外加热法”测得了土壤有机质含量;分析了土壤原始光谱反射率(R)与有机质含量的相关性,选取R2>0.15的敏感波段的反射率;利用CWT对土壤原始光谱反射率(R)、光谱反射率的连续统去除(CR)进行不同尺度的分解,分析小波系数与土壤有机质含量的相关性,选取R2>0.3的敏感波段的小波系数;利用R选取的波段信息和R-CWT,CR-CWT的选取的小波系数,分别建立偏最小二乘回归(PLSR)、BP神经网络(BPNN)、支持向量机回归(SVMR)三种不同的土壤有机质含量反演模型。结果表明:相比R与土壤有机质含量的决定系数R2,R-CWT,CR-CWT变换后得到的小波系数与土壤有机质含量的决定系数R2分别提高了0.15和0.2左右;CR-CWT-SVMR的模型效果最为显著,预测集的R2和RMSE分别为0.83,4.02,RPD值为2.48,具有较高的估测精度,能够全面稳定地估算土壤有机质含量;CR-CWT-PLSR的模型精度与CR-CWT-BPNN,CR-CWT-SVMR相比虽有一定差距,但是其计算量要明显小于非线性的BPNN和SVMR方法,具有模型简单、运算速度快等特点,对开发与设计田间传感器具有较大的应用价值。  相似文献   

9.
基于模糊识别的苹果花期冠层钾素含量高光谱估测   总被引:1,自引:0,他引:1  
依据2008年和2009年2年在栖霞试验区利用地物光谱仪ASD FieldSpec3测定的苹果花期冠层高光谱和实验室内测定的钾素含量数据,以冠层高光谱反射率及其11变换形式与钾素含量分别进行相关分析,以相关系数最大者为自变量,采用模糊识别算法,建立钾素含量估测模型;以2008年的检验样本对模型进行检验,并利用2009的独立试验数据对模型进行验证。结果表明,原始光谱反射率(R)及其倒数(1/R)、对数(lgR)、平方根(R1/2)与钾素含量的相关性较差,但它们的一阶微分和二阶微分与钾素含量之间的相关性明显增强;建立的钾素含量估测模型=11.344 5h+1.309 7的相关系数r为0.985 1,总均方根差RMSE为0.355 7,F统计量为3 085.6;24个检验样本实测值与估测值的平均相对误差为9.8%,估测精度为90.2%;2009年试验验证精度达到了83.3%。表明模型用于苹果花期冠层钾素含量的估测具有较高的稳定性,模型精度能满足生产上对苹果钾素含量估测的要求。  相似文献   

10.
露天煤矿排土场地表的光谱特征和土壤参数分析   总被引:1,自引:0,他引:1  
以辽宁海州煤矿露天排土场为研究对象,分析了地表土壤光谱特征以及反射光谱与地表土壤参数的相关性。土壤反射光谱分析结果表明:不同排土年限光谱反射率随排土年限的增长而降低;不同土质中灰土和混合土的水分吸收谷表征不明显,红壤土、黄土和红砂土光谱反射率以红壤土为最高, 以下依次为黄土和红砂土。土壤反射光谱与土壤参数相关性分析结果表明:有机质含量与反射光谱相关性最高处的相关系数为-0.76,其他参数与反射光谱相关系数较低。建立土壤有机质含量预测模型(建模R2C=0.737 4,模型检验R2V=0.682 4)满足检测要求。分析了1 910和1 943 nm处光谱反射率与土壤含水量之间的关系,结果表明由于排土场土壤的多样性和复杂性,土壤全样本光谱反射率与土壤含水量之间呈非线性相关,分别依年代、土质分组后,土壤光谱反射率与土壤含水量均呈线性相关。  相似文献   

11.
光谱测定黑河上游土壤有机质的预测模型   总被引:1,自引:0,他引:1  
地面高光谱遥感光谱分辨率高,能详细地反映地物波谱特征;多光谱遥感时域宽,覆盖范围广,对较大时空区域的地物特征反演具有更大的优势。探求以不同反射率指标的土壤有机质含量预测模型,及其敏感波段,可以结合两种光谱数据的优点,为研究土壤有机质含量的时空变化规律提供新途径。本研究选取黑河上游223个土壤样品测定其有机质含量和高光谱曲线,应用原始光谱曲线反射率(λ)、倒数(REC)、倒数之对数(LR)、归一化(CR)和一阶微分(FRD)五种指标,采用逐步线性回归分析方法建立预测模型。通过统计检验,结果表明,以反射率指标为自变量的模型预测效果最佳,其相关系数(r)和均方根误差(RMSE)分别为:0.863和4.79。最优模型中得出的敏感波段有TM1内的474 nm、TM3内的636 nm和TM5内的1 632 nm。研究结果可为使用TM遥感数据反演黑河上游土壤有机质含量提供参考。  相似文献   

12.
光谱分辨率对黑土有机质预测模型的影响   总被引:8,自引:0,他引:8  
高光谱遥感以其高光谱分辨率适于反射光谱特征复杂的地物识别与参数反演,但对于反射光谱特征平滑的地物,高光谱数据可能存在数据冗余问题。本研究对实验室测定的黑土高光谱反射率进行重采样,基于统计分析方法研究了光谱分辨率对黑土有机质预测模型精度的影响,结果表明:黑土有机质含量高,土壤有机质的光谱作用范围宽(445~1 380nm);黑土有机质光谱预测模型精度随光谱分辨率降低,呈现先增后减的趋势,最优模型的光谱分辨率为50nm,低于高光谱遥感波段设置,略高于多光谱传感器波段设置;黑土有机质光谱预测最优模型以倒数对数微分为自变量,模型决定系数R2=0.799,RMSE=0.439,研究成果为土壤有机质遥感反演、光谱速测仪器的研制,以及传感器波段设置提供理论基础与技术支持。  相似文献   

13.
土壤有机质是土壤肥力的重要体现,土壤水分是限制利用光谱技术进行土壤属性光谱监测的重要因子之一。为了研究土壤水分对土壤有机质光谱监测精度的影响和实现土壤有机质(soil organic matter, SOM)的准确、实时监测,对151份麦田土壤样品的土壤水分、土壤有机质和土壤光谱进行了测定。基于土壤含水量(soil water content, SWC)分类法和归一化土壤水分指数(normalized difference soil moisture index, NSMI)光谱参数分类法对麦田土壤样品进行分类,并对土壤含水量、土壤有机质和土壤光谱参数之间的关系进行研究。结果表明:以土壤含水量对土壤样品进行分类后,各分组之间的土壤有机质光谱监测精度各异,且都高于不分组条件下(5%~20%)土壤有机质光谱监测精度,表明土壤水分确实影响土壤有机质的光谱监测。土壤含水量低于10%和高于20%时,土壤水分对土壤有机质光谱监测精度的影响较小,表明此时的土壤水分状态易于土壤有机质的光谱监测。另一方面,以NSMI光谱参数对土壤样品进行分类后,各分组条件下的土壤有机质光谱监测的拟合精度优于基于土壤含水量的分类方法,通过R2,RMSE和RPD模型验证参数的验证,各模型可靠,表明利用NSMI光谱参数的分类方法,在一定程度上可以实现对土壤自然条件下土壤有机质的实时、准确监测。但是,所提到的两种土壤分类方法在本质上一样,说明仍然可能存在最优的土壤分类方法,来克服和消除土壤水分对土壤有机质光谱监测精度的影响。为土壤水分和土壤有机质的大面积遥感提供一定的理论基础。  相似文献   

14.
不同粒径对土壤有机质含量可见-近红外光谱预测的影响   总被引:1,自引:0,他引:1  
土壤有机质(SOM)是表征土壤肥力的重要指标,实现其快速准确检测可为精准农业区域管理提供有效的数据支撑。土壤粒径对SOM的光谱预测及仪器开发有很大的影响,为了明确不同粒径对SOM预测的影响,分别制备了1~2,0.5~1,0.25~0.5,0.1~0.25和<0.1 mm五种均匀粒径及<1 mm混合粒径共计6种粒径土样并进行了可见-近红外(300~2 500 nm)光谱数据采集。采用蒙特卡罗交叉验证分别剔除了不同粒径的异常样本,结合Savitzky-Golay卷积平滑法对光谱数据进行平滑去噪处理,比较了不同粒径样品的光谱反射率差异,并对平滑后的原始光谱R进行倒数IR、对数LR、一阶导数FDR等3种光谱变换并分析与SOM含量的相关性,基于竞争性自适应重加权算法(CARS)对光谱数据进行了特征波长提取,并结合偏最小二乘回归(PLSR)分别建立了相应的SOM含量预测模型。结果表明,不同粒径土样的平均光谱反射率与变异系数随着粒径的减小逐渐增加,且在大于540 nm波长范围内,差异明显。随着粒径的减小,SOM含量与光谱反射率在全波段范围的相关性变化幅度愈加明显,FDR变换可明显改变全波段范围与SOM含量的相关性。通过CARS算法对FDR变换后的光谱数据进行特征波长提取,筛选出特征波长数为全波段数量的13.1%,降低了光谱数据重叠及无效信息干扰。对比不同SOM预测模型的结果,FDR变换光谱的建模精度较好,且粒径越小其模型的效果越好,特别在粒径<0.1 mm时,模型的R2p达到0.91,RMSEP为2.20 g·kg-1,RPD为3.33。基于CARS特征变量构建的SOM含量预测模型中,粒径<0.1 mm预测模型的效果最好,R2p为0.78,RMSEP为3.00 g·kg-1,RPD为2.00,可以实现SOM含量的可靠预测,且其他粒径下的模型仍有可优化的空间。该研究可以为实现SOM田间动态预测及仪器设计提供理论及模型参考。  相似文献   

15.
高光谱技术联合归一化光谱指数估算土壤有机质含量   总被引:4,自引:0,他引:4  
随着近地高光谱遥感技术的发展,为快速、有效、非破坏性地获取土壤有机质(SOM)信息提供了可能。土壤高光谱波段数据众多,光谱数据变量之间存在较为严重的多重共线性,影响模型复杂结构,而构建归一化光谱指数(NDSI)可以有效去除冗余信息变量,放大光谱特征信息。以江汉平原公安县为研究区,采集56份耕层土样,在室内获取土壤光谱数据,采用“重铬酸钾-外加热法”测定SOM含量,对实测土壤光谱数据(Raw)进行倒数之对数(LR)、一阶微分(FDR)和连续统去除(CR)三种变换,计算四种变换的NDSI数值,分析SOM与NDSI的二维相关性,并对一维、二维相关系数进行全波段范围内的p=0.001水平上显著性检验,提取敏感波段和敏感光谱指数,结合偏最小二乘回归(PLSR)建立SOM的估算模型,探讨二维光谱指数用于建模的可行性。研究表明,二维相关系数相比一维相关系数有不同程度的提升,以LR最为显著,相关系数数值提升约0.26;基于二维相关性分析提取的敏感光谱指数的PLSR建模效果整体优于一维相关性分析提取的敏感波段,其中,NDSILR-PLSR模型的稳健性最优,验证集R2为0.82,模型验证RPD值为2.46,模型稳定可靠,可以满足SOM的精确监测需要,适合推广到区域范围内低分辨率的航空航天遥感(如ASTER,Landsat TM等),应用潜力较大。  相似文献   

16.
顾及土壤湿度的土壤有机质高光谱预测模型传递研究   总被引:4,自引:0,他引:4  
高光谱遥感技术作为当前遥感发展的前沿科技,通过电磁波与地物的相互作用,可以定量反演地物的物理化学性质。土壤有机质是重要的土壤养分信息参数,利用高光谱遥感技术快速获取其含量信息可以为精准农业的发展提供必要的数据支撑。然而,由于受到外部参数差异的干扰,导致建模精度降低的同时,还会造成已有模型传递性的“失效”。为了消除湿度差异的干扰,进一步拓展已有模型的适用空间,以江汉平原滨湖地区为例,通过对95个土壤样本进行加湿处理,在实验室自然风干的条件下,量测得到13套不同湿度等级土壤样本的可见—近红外反射光谱数据,建立了各湿度等级下土壤有机质的光谱反演模型,研究水分差异对建模精度的影响;在此基础上,运用Direct Standardization(DS)算法对湿土光谱进行校正,进而探讨该算法在提高模型传递性能方面的潜力。结果表明:基于风干土光谱建立的模型预测精度最高,未经校正的湿土光谱无法通过该模型进行土壤有机质含量预测,预测偏差在-8.34~3.32 g·kg-1,RPD在0.64~2.04;经过DS算法校正后的湿土光谱可以通过该模型进行土壤有机质含量预测,预测偏差降低至0,RPD值提高至7.01。研究表明DS算法能有效降低湿度差异对光谱反演土壤有机质的影响,使土壤有机质光谱反演模型适用于不同水分含量的土壤样本。  相似文献   

17.
高光谱小波能量特征估测土壤有机质含量   总被引:3,自引:0,他引:3  
章涛  于雷  易军  聂艳  周勇 《光谱学与光谱分析》2019,39(10):3217-3222
土壤高光谱在采集过程中难以避免噪声干扰,造成高光谱数据信噪比较低,影响土壤有机质含量估测精度。尝试探究小波能量特征方法,降低高光谱噪声,提升土壤有机质含量高光谱估测模型性能。选取湖北省潜江市运粮湖管理区为试验区,于2016年9月采集80份深度为0~20 cm的水稻土样本;土壤样本经风干、碾磨、过筛等一系列处理后,在实验室内采集样本光谱,并通过重铬酸钾-外加热法测定土壤有机质含量;利用浓度梯度法,将总体样本集(80个样本)划分为建模集(54个样本)和验证集(26个样本);以mexh为小波基函数进行连续小波变换(continuous wavelet transformation),将土壤高光谱转换为10个分解尺度的小波系数(wavelet coefficients);逐尺度计算小波系数的均方根作为小波能量特征(energy features),将10个尺度的小波能量特征组成小波能量特征向量(energy features vector);逐尺度逐波长计算小波系数与有机质含量的相关系数,将达到极显著水平(p<0.01)的小波系数作为敏感小波系数(sensitive wavelet coefficients);利用主成分分析法(principal component analysis)分别计算土壤高光谱和小波能量特征向量的各主成分载荷,通过比较两者第一主成分贡献率的高低和两者前三个主成分得分的空间离散程度,判断小波能量特征转换前后建模自变量的主成分信息变化趋势;基于小波能量特征向量和敏感小波系数分别建立多元线性回归和偏最小二乘回归土壤有机质含量估测模型。结果表明,土壤有机质含量越高,全波段反射率越低,但不同土样的光谱反射率曲线特征相似,近红外部分的反射率(780~2 400 nm)高于可见光部分(400~780 nm);敏感小波系数对应的波长为494,508,672,752,1 838和2 302 nm;土壤高光谱与小波能量特征向量的第一主成分贡献率分别为96.28%和99.13%,小波能量特征向量的前三个主成分散点较土壤高光谱的主成分散点在空间上更为聚集,表明小波能量特征方法有效减少了噪声影响;比较全部土壤有机质含量估测模型,以小波能量特征向量为自变量的多元线性回归模型具有最佳估测精度,其验证集决定系数(R2)、相对估测误差(RPD)和均方根误差(RMSE)分别为0.77,1.82和0.82。因此,小波能量特征方法既能够提高数据的信噪比,提升土壤有机质含量的估测精度,又实现了土壤高光谱数据降维,降低了模型复杂度,可用于土壤有机质含量快速测定和土壤肥力动态监测等研究。  相似文献   

18.
土壤Cd含量实验室与野外DS光谱联合反演   总被引:3,自引:0,他引:3  
土壤重金属高光谱遥感建模理论上能够大大降低传统化学分析测定所需成本,正逐步发展为有效探查土壤污染空间分布与开展污染土壤综合防治的关键技术。然而土壤重金属高光谱遥感调查技术目前多局限于稳定可控条件下的实验室光谱模型,野外诸多因素(光照、湿度、土壤粗糙度等)影响下野外原位光谱模型的有效性已成为困扰该项技术大范围推广亟待突破的关键科学问题。以湖南衡阳市某矿区为例,分别利用ASD地物光谱仪和等离子发射光谱法测定46个土壤样品350~2 500 nm的实验室光谱和Cd含量,并在土壤取样时同步测量样品野外原位光谱。在运用DS(direct standardization)转换算法处理野外光谱的基础上,融合实验室光谱先验知识,基于主成分逐步回归建模方法开展了土壤Cd含量实验室与野外原位DS光谱联合反演实验,交叉验证了模型的稳定性。同时为深入探究实验室与野外原位DS光谱联合反演模型的有效性,将其与基于实验室光谱、野外原位光谱、野外原位DS光谱、实验室与野外原位光谱联合建立的主成分逐步回归模型开展了对比分析。结果表明:野外原位光谱反演模型精度(R2=0.56)明显低于实验室光谱反演模型(R2=0.64),野外原位DS光谱反演模型与之相比精度有所提升(R2=0.66);在野外原位光谱DS转换校正基础上,联合实验室光谱先验知识的土壤Cd含量反演模型精度最高,R2可达0.72。与此同时,实验室与野外原位DS光谱联合反演模型揭示482,565,979和2 206 nm波段对研究区土壤Cd含量有较好指示性,此结果与实验室光谱反演模型所识别的特征波段一致,两者物理意义相同。研究结果证实了实验室光谱先验知识以及DS转换算法能够提升野外原位光谱模型的可靠性,可为发展土壤Cd含量野外原位高光谱遥感探测提供重要的提供理论与方法支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号