首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
建立基于冬小麦冠层图像分析获取的冠层覆盖度和色彩指数的地上部生物量估算模型,以促进作物冠层图像分析技术和BP神经网络技术在冬小麦长势无损监测中的应用。六个施氮水平的田间试验条件下,在冬小麦拔节期,分四次采集冬小麦冠层图像,同步进行破坏性取样,测定冬小麦地上部生物量;分析了通过图像分析软件(利用微软Visual Basic软件开发)获取的冠层覆盖度和10种色彩指数与冬小麦地上部生物量的相关关系,以逐步回归和BP神经网络方法建立了冬小麦地上部生物量估算模型。结果表明,冬小麦地上部生物量与冠层覆盖度、饱和度和红光亮度值呈显著相关,其中,与冠层覆盖度间的相关性最强,且除亮度外,冠层覆盖度、色彩指数与地上部生物量间呈非线性相关。通过BP神经网络方法构建的模型相对于逐步回归模型,显著提高了冬小麦地上部生物量估算精度,均方根误差(RMSE)、相对均方根误差(RRMSE)更小,决定系数(R2)更大。  相似文献   

2.
基于可见光光谱和随机森林算法的冬小麦冠层图像分割   总被引:1,自引:0,他引:1  
数字图像分析技术因其高效、快速等特点,已被广泛应用于作物长势和氮素营养状况的无损监测领域。获取作物冠层覆盖度及可见光光谱亮度值及其衍生的色彩指数,需要从作物冠层图像中准确分割出作物图像。研究以冬小麦与背景(土壤)在可见光波段反射率的差异为依据,利用基于CIEL*a*b*色彩空间a*分量的最大类间方差法和基于sRGB和CIEL*a*b*两个色彩空间的随机森林算法对冬小麦冠层图像进行了分割,并比较了图像分割精度。结果表明,三种方法均具有较高的分割精度,其中基于随机森林算法的图像分割效果明显好于最大类间方差法,而基于sRGB和CIEL*a*b*两个色彩空间的随机森林算法的图像分割效果差异较小。研究结果表明,随机森林算法可直接利用冠层图像可见光波段的三个色彩分量(R,G和B)分割冬小麦冠层图像。  相似文献   

3.
冬小麦叶面积指数遥感反演方法比较研究   总被引:5,自引:0,他引:5  
叶面积指数(leaf area index, LAI)是反映作物生长状况和进行产量预测预报的主要指标之一,对诊断作物生长状况具有重要意义。遥感技术为大面积、快速监测植被LAI提供了有效途径。利用高光谱遥感影像,结合田间同步实验数据,探讨不同方法对冬小麦叶面积指数遥感反演的能力。介绍了支持向量机、离散小波变换、连续小波变换和主成分分析四种LAI反演方法。分别利用上述四种方法构建冬小麦LAI反演模型,并对不同算法反演的LAI模型进行了真实性检验。结果显示,支持向量机非线性回归模型精度最高,对冬小麦LAI估算能力最强,反演值与实测值拟合的决定系数为0.823 4、均方根误差为0.419 5。离散小波变换法和主成分分析法都是基于特征提取和数据降维,其多元变量回归分析对LAI估算能力相近,决定系数分别为0.697 1和0.692 4,均方根误差分别为0.605 8和0.554 1。连续小波变换法回归模型精度最低,不适宜直接用其小波系数来反演LAI。结果表明,非线性支持向量机模型最适宜用于研究区域的冬小麦LAI反演。  相似文献   

4.
基于高斯回归分析的水稻氮素敏感波段筛选及含量估算   总被引:1,自引:0,他引:1  
水稻氮素含量的准确监测是稻田精准施肥的重要环节,水稻叶片氮素含量发生变化会引起叶片、冠层的光谱发射率发生变化,高光谱遥感是目前作物氮素无损监测的关键技术之一。以2018年-2019年湖北监利两年水稻氮肥试验为基础,分别获取水稻分蘖期、拔节期、孕穗期、扬花期、灌浆期五个生育期水稻叶片和冠层两个尺度的高光谱反射率数据及对应的叶片氮素含量数据,利用单波段原始光谱和一阶导数光谱的相关性分析、高斯过程回归(GPR)等方法筛选水稻全生育期叶片及冠层尺度氮素敏感波段。针对敏感波段,利用单波段回归分析、随机森林(RF)、支持向量回归(SVR)、高斯过程回归-随机森林(GPR-RF)、高斯过程回归-支持向量回归(GPR-SVR)和GPR构建水稻氮素监测模型,并进行精度对比,以确定水稻叶片在各生育期的氮素估算最佳模型。结果表明:GPR筛选的敏感波段符合水稻氮素含量及光谱变化的规律。相同条件下,叶片模型精度整体高于冠层模型。相关性分析模型中,叶片尺度原始光谱模型更好,冠层尺度刚好相反,冠层一阶导数光谱可以减弱稻田背景噪声的影响。其中,叶片最佳模型建模集R2为0.79,验证集R2为0.84;冠层最佳模型建模集R2为0.80,验证集R2为0.77。与相关性回归分析模型相比,机器学习模型受生育期影响小(R2>0.80,NRMSE<10%)。其中,RF比SVR更适合对GPR敏感波段建模,GPR-RF模型可以用1.5%左右的波段达到RF模型使用全部波段的精度。五种方法中,GPR模型对生育期敏感度最低、叶片及冠层尺度效果都很好(R2>0.94,NRMSE<6%)。且与其他四种机器学习方法相比,GPR模型可有效提高冠层氮素含量估算的精度和稳定性(R2增加0.02,NRMSE降低1.2%)。GPR方法可为筛选作物氮素高光谱敏感波段、反演各生育期叶片及冠层氮素含量提供方法参考。  相似文献   

5.
可见光光谱的冬小麦苗期地上生物量估算   总被引:1,自引:0,他引:1  
地上生物量是表征冬小麦苗期长势的重要参数之一,对于监测冬小麦苗期长势,预测产量具有重要的实际意义。目前,通过计算光谱指数进行生物量估算是冬小麦苗期地上生物量无损测量的主要方法,但该方法需要一定的平台支撑,在便捷性方面存在一定的不足。为此,利用可见光图像数据获取方便、准确率高的特点,基于冬小麦苗期冠层可见光图像数据开展冬小麦苗期地上生物量估算研究。采用数码相机,采集冬小麦苗期冠层可见光图像并利用Canopeo进行冬小麦冠层与背景的分割。在获取冠层分割图像后,提取了CC(canopy cover)、ExG(excessg reen)、ExR(excess red)、ExGR(ExG-ExR)、NGRDI(normalized green-red difference index)、GLI(green leaf index)、RGRI(red-green ratio index)和RGBVI(RGB vegetation index)共8个可见光图像特征。利用相关性分析进行特征优选,选择与冬小麦苗期地上生物量实测数据相关性较高的图像特征构建估算模型。利用优选的图像特征,分别构建偏最小二乘回归(PLSR)、BP神经网络(BPNN)、支持向量机回归(SVR)和随机森林(RF)模型,开展冬小麦苗期地上生物量估算研究,并定量分析特征数量和播种密度对估算模型准确率的影响。结果表明,ExR,GLI和RGBVI与生物量实测数据相关性较低,因此,将这3个特征剔除。CC,ExG,ExGR,NGRDI和RGRI与生物量实测数据的相关性较高,其中CC,ExG和ExGR与生物量实测数据呈正相关,而NGRDI和RGRI与生物量实测数据呈负相关。利用优选的图像特征构建估算模型,研究结果表明,基于优选的5个图像特征,PLSR的估算准确率最高,模型R2为0.801 5,RMSE为0.0788 kg·m-2,表明PLSR能够实现冬小麦苗期地上生物量的准确估算。特征数量是影响估算模型准确率的因素之一,随着特征数量的减少,模型估算的准确率逐步下降。利用不同播种密度数据集对估算模型进行测试,结果表明,PLSR在不同的播种密度数据集上均取得了最高的估算准确率,模型R2分别为0.897,0.827 9和0.788 6,RMSE分别为0.062,0.072和0.079 1 kg·m-2,表明PLSR估算的冬小麦苗期地上生物量数据与实测生物量数据之间具有良好的相关关系。随着播种密度的增加,所有估算模型的准确率均出现下降,而PLSR的准确率下降程度最小。由此可见,基于可见光图像数据,能够实现冬小麦苗期地上生物量的准确估算,为冬小麦苗期田间管理提供参考。  相似文献   

6.
苹果盛果期冠层高光谱与其组分特征的定量模型研究   总被引:6,自引:0,他引:6  
Wang L  Zhao GX  Zhu XC  Lei T  Dong F 《光谱学与光谱分析》2010,30(10):2719-2723
从分析苹果树盛果期冠层高光谱入手,结合同一时间的数码照片,在Erdas,ViewSpec Pro,DPS和LIBSVM等软件的支持下,采用相关分析、线性回归、逐步回归、基于BP人工神经网络分析、支持向量机回归方法,探析高光谱反射率及其转换数据与冠层组分指数间的关系。结果表明,冠层反射率受地表反光膜的影响显著;原始反射率与果叶比的相关性最好,611~680 nm为反映两者关系的特征波段;在特征波段内,依据原始反射率和果叶比所建立的4种模型都可满足预测需要,但基于BP人工神经网络模型和支持向量机回归模型整体上优于一元线性回归模型和多元线性回归模型,尤以支持向量机回归模型精度最高。研究结果可为后续的苹果遥感估产工作提供理论支持。  相似文献   

7.
运用PLS算法由小麦冠层反射光谱反演氮素垂直分布   总被引:10,自引:3,他引:7  
文章提出了利用遥感光谱数据反演小麦冠层氮素垂直分布的化学计量学方法,运用偏最小二乘算法(PLS),穷尽测定的小麦田间冠层可见光和近红外光谱不同波长处的冠层光谱反射率及其组合与小麦不同层次的叶绿素、叶片全氮含量之间的关系。通过2001~2002年的建模和2003~2004年的验证试验,求得了用PLS算法对叶片全氮上层、中层、下层垂直分布估算结果的相关性。表明PLS算法能够用于反演作物冠层生物化学参数的垂直分布。运用PLS的小麦氮素垂直分布的估算方法,较以往单一冠层估算方法精度明显提高,对于生产上迫切需求对作物中、下层叶片氮素状况的监测来指导适时和适量施肥具有指导意义。  相似文献   

8.
基于偏振反射模型和随机森林回归的叶片氮含量反演   总被引:1,自引:0,他引:1  
叶片氮含量极大程度上影响植被生物化学过程,有重要的研究意义。利用机载高光谱数据反演叶片氮含量在农业遥感领域有广泛应用,但其反演精度不能完全满足精细农业的需要,有一定提升空间。叶片氮含量遥感反演精度受机理误差和算法误差的影响,机理误差主要来源于叶片表面反射。传感器探测到的反射辐射既包含叶片内部多次散射,又包含叶片表面镜面反射部分,只有前者是携带叶片内部生化组分(如氮含量)信息的,由于后者是入射光在叶表蜡质层发生的直接反射,因此该部分并不携带叶片内部信息。根据菲涅尔定律,叶表镜面反射是部分偏振的,而内部散射是非偏振的,因而通过偏振反射建模可部分去除叶表镜面反射影响,以消除机理误差。算法误差主要来源于不同氮含量反演算法对于高光谱数据挖掘能力的差别。比较了偏最小二乘法、主成分回归、支持向量机、K-近邻算法和随机森林回归在高光谱叶片氮含量反演中的表现,在调整算法参数之后,选择使用随机森林回归算法以减少高光谱反演算法误差。以常绿针叶林、落叶阔叶林和针阔混交林为研究对象,利用多角度偏振卫星POLDER/PARASOL的多光谱数据库构建二向偏振反射模型,用以模拟和分析研究区森林的偏振反射率;从HySpex传感器系统获取的机载高光谱数据中去除偏振反射率带来的光谱机理误差,以实现叶片氮含量的精确反演。以均方根误差为主要指标评估精度变化可获得以下结论:在高光谱叶片氮含量反演中,消除偏振反射率带来的机理误差后,各算法反演精度均有提升,平均提升了4.244%。其中,随机森林回归可以最大程度减小反演算法误差(可决系数达到0.803,均方根误差达到0.252),且对光谱偏振信息最为敏感,去除偏振后精度提高了13.103%。相比于广泛使用的偏最小二乘算法,去除光谱机理误差并减小反演算法误差后,叶片氮含量反演精度整体提高了32.440%。该研究实现了基于机载高光谱数据的叶片氮含量精确反演,证明了在叶片氮含量反演中去除偏振反射率的必要性,体现了在高光谱氮含量反演中随机森林算法的应用潜力。  相似文献   

9.
氮、磷、钾元素是植物有机质的重要生化组分,准确估算其含量对监测管理植被的新陈代谢和健康状况具有重要意义。可见-近红外光谱结合多种建模方法已被用于植被生化参数的监测,其中支持向量机回归方法被证明能够较好拟合反射光谱和植被生化参数之间的非线性关系,而选取适当的核函数是其成功的关键。以宜兴地区水稻、玉米、芝麻、大豆、茶叶、草地、乔木和灌木等八种植被叶片样本为研究对象,分析比较基于径向基核函数、多项式核函数和S形核函数的支持向量回归模型估算叶片氮、磷、钾元素含量的能力。利用一阶微分变换、标准正态变量变换和反对数变换对叶片可见-近红外光谱进行预处理,运用bootstrapping法生成1 000组校正集和验证集,分别建立基于三种核函数的支持向量回归估算模型,以决定系数(R2)和相对分析误差(RPD)的均值作为评价指标。结果显示,结合一阶微分和反对数变换光谱,采用径向基核函数模型对氮、钾元素估算精度最高(氮:平均R2=0.64,平均RPD=1.67;钾:平均R2=0.56,平均RPD=1.48),结合一阶微分变换光谱,采用径向基核函数模型对磷元素估算精度最高(磷:平均R2=0.68,平均RPD=1.73)。研究表明,结合不同预处理的可见-近红外光谱,基于径向基核函数的支持向量回归模型具有较好的估算多种植被叶片生化组分含量的潜力。  相似文献   

10.
无人机高光谱波段选择的叶面积指数反演   总被引:1,自引:0,他引:1  
叶面积指数(LAI)是评价作物长势和作物产量的重要参数。为有效利用高光谱信息,优选出最佳波段进而构建新型双波段指数来提高LAI估测精度,以冬小麦为研究对象,获取冬小麦孕穗期无人机高光谱数据和实测地面LAI数据,开展冬小麦LAI反演研究。首先采用连续投影算法(SPA)、最佳指数法(OIF)以及逐波段组合法(E)分别进行无人机高光谱数据最佳波段筛选,进而将所选最佳波段构建新型双波段指数(VI_OIF,VI_SPA,VI_E);然后将构建的新型双波段指数和常规双波段指数(VI_F)与LAI进行相关性对比分析,最后结合支持向量回归(SVR)、偏最小二乘回归(PLSR)和随机森林回归模型(RFR)进行LAI估算,并对比分析常规双波段指数的估算精度,验证最佳波段选择方法构建新型双波段指数的最佳回归模型反演LAI的可行性。结果表明:(1)新构建双波段指数VI_OIF,VI_SPA,VI_E和VI_F与冬小麦LAI的相关性均达到0.05的显著水平,其中VI_SPA和VI_E与LAI的相关系数高于0.65,且RSI_SPA和RSI_E与LAI的相关性较高(r>0.71);(2)对比分析VI_OIF、VI_SPA、VI_E和VI_F构建的SVR模型、PLSR模型和RFR模型的冬小麦LAI估测精度,VI_SPA_PLSR模型估测精度最高,R2和RMSE分别为0.75和0.90。该方法可为无人机高光谱数据波段选择以及冬小麦LAI反演提供技术支持和理论参考。  相似文献   

11.
The objective of this study was to evaluate the feasibility of using color digital image analysis and back propagation (BP) based artificial neural networks (ANN) method to estimate above ground biomass at the canopy level of winter wheat field. Digital color images of winter wheat canopies grown under six levels of nitrogen treatments were taken with a digital camera for four times during the elongation stage and at the same time wheat plants were sampled to measure above ground biomass. Canopy cover (CC) and 10 color indices were calculated from winter wheat canopy images by using image analysis program (developed in Microsoft Visual Basic). Correlation analysis was carried out to identify the relationship between CC, 10 color indices and winter wheat above ground biomass. Stepwise multiple linear regression and BP based ANN methods were used to establish the models to estimate winter wheat above ground biomass. The results showed that CC, and two color indices had a significant correlation with above ground biomass. CC revealed the highest correlation with winter wheat above ground biomass. Stepwise multiple linear regression model constituting CC and color indices of NDI and b, and BP based ANN model with four variables (CC, g, b and NDI) for input was constructed to estimate winter wheat above ground biomass. The validation results indicate that the model using BP based ANN method has a better performance with higher R-2 (0.903) and lower RMSE (61.706) and RRMSE (18.876) in comparation with the stepwise regression model.  相似文献   

12.
基于光谱指数波段优化算法的小麦玉米冠层含氮量估测   总被引:1,自引:0,他引:1  
作物关键生育时期冠层氮素含量的实时监测对于优化氮肥用量和减少环境风险具有重要的意义。为了寻求预测不同作物氮素含量的最佳光谱参数,实现作物氮素无损营养诊断。本研究通过2008年—2011年在德国慕尼黑弗莱辛和河北曲周的不同氮量的小麦玉米田间试验,采用高光谱仪获取小麦玉米冠层的反射光谱,利用光谱理论模型进行光谱指数波段的优化,从而抽取不同冠层结构条件下的小麦玉米氮素营养敏感波段。结果表明与传统的基于红光的光谱指数相比,优化光谱指数显著提高了小麦玉米冠层氮素含量的预测能力,克服了传统的基于红光光谱指数的饱和问题。优化光谱指数的波段结合随着作物品种及其冠层结构的变化而变化,其优化波段范围主要集中在红边(730~760 nm)和红边向近红外的过渡区域(760~880 nm)。优化结果显示玉米最佳光谱指数为Rλ766/Rλ738-1,小麦最佳光谱指数为Rλ796/Rλ760-1,玉米小麦相结合优化后的最佳光谱指数为Rλ876/Rλ730-1。结果进一步验证了优化光谱指数估测的不同作物含氮量的预测值与实测值相关性最高,且验证偏差最小,证实了优化后的光谱特征参数可对不同作物氮素丰缺状况进行快速、准确、无损估测。试验结果也为设计作物冠层氮素传感器和更好的利用现有基于卫星的传感器实施区域上的作物氮素营养监测提供了理论基础。  相似文献   

13.
为了探索运用数码照片中光谱(红、绿、蓝)的像素计算得到的冠层覆盖度(canopy cover, CC)对玉米长势及氮素营养状态进行非破坏性监测的技术。通过获取玉米冠层的数码照片图像,定量化数码照片色彩参数与作物叶面积指数(leaf area index, LAI)、冠层干重(shoot dry matter weight, DM)、叶片氮素含量(leaf nitrogen content percentage, N%)之间的关系。试验于2012年和2013年在中国农业科学院试验田进行,运用基于Visual Basic Version 6.0研发的玉米冠层图像分析系统,分析了玉米品种中单909在3个氮素水平条件下分别于9叶展时期、抽雄期和灌浆期的CC、11种色彩指数与植株LAI,DM,N%及产量之间的相关性,并对相关性显著的指标进行了拟合与建模。结果表明,CC与LAI(r=0.93, p<0.01),DM(r=0.94, p<0.01),N%(r=0.82, p<0.01)之间均达到了极显著水平;用CC估算LAI,DM和N%的模型均为幂函数,方程式分别是y=3.281 2x0.763 9,y=283.658 1x0.553 6,y=3.064 5x0.932 9;用与建模相独立的数据对模型验证,结果表明,CC估算LAI模型的实测值与模拟值基于1∶1直线的R2,RMSE和RE分别是0.996,0.035和1.46%;CC估算DM模型的R2,RMSE和RE分别是0.978,5.408 g和2.43%;CC估算N%模型的R2,RMSE和RE分别是0.990,0.054和2.62%。综上所述,模型能够较准确的通过CC估算不同氮肥水平条件下玉米9叶展时期、抽雄期和灌浆期的LAI,DM与N%,表明应用数码相机的光谱信息可实现对玉米生长过程中的生长状况及氮素营养状态进行实时无损快速监测与预测。  相似文献   

14.
基于无人机可见光谱平台的烤烟氮素营养诊断   总被引:1,自引:0,他引:1  
利用不同氮肥用量田间试验,分析基于无人机平台的可见光谱诊断技术对烟草氮素营养进行无损评估预测的可行性,明确该技术的最佳颜色参数和方程模型。2018年在江西省安福县开展田间试验,设置不同氮肥用量,分别为0,45,90,135,180和300 kg N·ha-1,于移栽后47 d(团棵期)、移栽后83 d(旺长后期)和移栽后116 d(下部叶成熟期),利用无人机获取冠层RGB色彩数字图像,同时采集植株样品分析地上部生物量、叶片生物量、地上部氮浓度、叶片氮浓度、叶片SPAD值等氮营养状况指标,对冠层数字图像进行数字化分析,获得颜色指标值,通过颜色指标与烟草氮营养状况指标的相关性分析,筛选适宜的颜色指标并建立氮营养诊断方程。利用不同地块的氮肥用量试验,对氮营养诊断方程拟合精度进行验证。试验结果表明,旺长后期各处理间冠层图像的颜色标准值存在显著差异,团棵期与下部叶成熟期不存在显著差异。在10个颜色指标中,NRI,NGI,G/R,G/(R+B),(G-R)/(R+G+B)和ExG与5个烤烟氮素营养指标均达到极显著相关(p<0.01)。在归一化颜色指标体系、比颜色指标体系和归一化差分颜色指标体系中选择潜在的最佳颜色参数指标分别为NGI,G/R和ExG。根据不同类型的回归分析结果,确定指数回归作为地上部生物量和叶片生物量的预测模型,线性回归作为地上部氮浓度、叶片氮浓度及叶片SPAD值的预测模型。对潜在的最佳指标进行验证性筛选,G/R对地上部氮浓度和叶片氮浓度的RMSE值分别为0.375 1%和0.249 1%,明显低于NGI和ExG,预测精度最高。用G/R值表示的地上部生物量、叶片生物量、地上部氮浓度、叶片氮浓度、SPAD值预测方程分别为Y=21.785e1.3502G/R,Y=4.057 9e1.937 3G/R,Y=5.039 9G/R-3.333 2,Y=4.281 4G/R-3.802 9,Y=40.168G/R-28.188。因此,基于无人机平台的可见光谱诊断技术在烤烟氮素营养诊断方面具有应用潜力,评估最佳时期为旺长后期,最佳预测参数为G/R值。  相似文献   

15.
实时、快速、无损监测作物氮素状况对于精确氮肥管理具有重要意义。传统的氮素估测方法在时间或空间上难以满足要求,新兴的高光谱遥感技术为作物氮素监测提供了有效手段和技术途径。本研究的目的是基于三个田间试验的系统观测资料,探索可用于小麦叶片氮素监测的新的高光谱敏感波段及比值指数。利用减量精细采样法,系统构建了350~2 500 nm范围内所有两两波段形成的比值光谱指数RSI(ratio spectral index),综合分析了小麦叶片氮积累量LNA(leaf nitrogen accumulation)(g N·m-2)与RSI的定量关系,发现了监测叶片氮积累量的新高光谱特征波段(990, 720)和光谱指数RSI(990, 720),建立了相应的监测模型y=5.095x-6.040,模型的决定系数(R2)为0.814。利用独立试验资料检验模型,决定系数(R2)为0.847,相对根均方差(RRMSE)为24.70%,表明模型预测值与观察值之间的符合度较高。因此,利用高光谱比值指数RSI(990, 720)来估算小麦叶片氮积累量是精确可行的。该结果为便携式小麦氮素监测仪的研制开发及遥感信息的快速提取提供了适用可行的波段选择与技术依据。  相似文献   

16.
利用高光谱遥感技术在水稻收获前对籽粒品质相关的蛋白质含量进行监测,一方面可以及时调整栽培管理方式,指导合理追肥,另一方面,有助于提前掌握籽粒品质信息,明确市场定位。该研究以广东省典型优质籼稻为研究目标,基于2019年和2020年两年氮肥梯度实验,以水稻分化期和抽穗期冠层尺度高光谱数据、水稻氮素参数,包括叶片氮素含量(LNC)、叶片氮素积累量(LNA)、植株氮素含量(PNC)、植株氮素积累量(PNA)及籽粒蛋白含量数据为基础,利用四种个体机器学习算法partial least square regression (PLSR)、K-nearest neighbor (KNN)、Bayesian ridge regression (BRR)、support vector regression (SVR),三种集成学习算法random forest (RF)、adaboost、bagging,针对水稻不同生育期氮素状况进行监测建模,在此基础上构建基于水稻冠层光谱信息、光谱信息结合水稻农学氮素参数的籽粒蛋白含量的监测模型,并对模型进行精度对比。研究结果表明,在水稻氮素营养监测方面,利用水稻冠层454~950 nm波段信息,采用RF及Adaboost算法,在水稻分化期、抽穗期及全生育期LNC、LNA、PNC及PNA模型R2均达到0.90以上,同时也具有较低的RMSE和MAE。在水稻籽粒蛋白品质监测方面,采用全波段光谱信息进行籽粒蛋白含量监测时,RF具有最高的精确度与稳定性,两生育期的RF模型对籽粒蛋白含量的监测结果R2分别为0.935和0.941,RMSE分别为0.235和0.226,MAE分别为0.189和0.152;两生育期以全波段光谱信息结合长势参数进行籽粒蛋白监测时,Adaboost模型具有最高的精确度和稳定性,其中分化期全波段光谱信息结合PNA作为输入参数,Adaboost模型R2为0.960,RMSE为0.175,MAE为0.150,以抽穗期全波段光谱信息结合PNC作为输入参数,R2为0.963,RMSE为0.170,MAE为0.137。研究结果表明,与PLSR,KNN,BRR和SVR几种个体学习器算法相比,集成算法RF,Adaboost和Bagging具备良好的处理多重共线性的能力,适合用于高光谱数据的分析与处理,在作物氮素营养监测及水稻品质的早期遥感监测方面具有明显优势。  相似文献   

17.
鉴于利用彩色视觉装置进行在线测量是颜色测量在工业应用发展的趋势,而光源的光谱分布和相机响应函数与人眼的光谱响应曲线的不一致会严重影响测量的精确性,在人工D65光源和LED阵列光源照明下,利用相同的工业相机获取校正图片,采用多项式回归方法在与设备无关空间sRGB和CIEL*a*b*空间进行校正。实验结果显示在校正前平均色差分别为27.68E和16.09E,人工D65光源照明下获取的图片色差较小,校正后不同光源下获取图片的色度趋于一致,分别为2.56E和2.39E。采用sRGB颜色空间,在校正精度、校正步骤、图片显示等方面都要优于CIEL*a*b*空间。以一幅拍摄的实际图片校正为例,显示了色度校正对彩色装置的重要性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号