首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 144 毫秒
1.
交叉非对称型Czerny-Turner光谱仪光学系统设计   总被引:1,自引:0,他引:1  
根据Czerny-Turner结构光谱仪工作原理,以便携式微型光学系统为设计目标,设计了一种光谱范围为200900nm的交叉非对称型Czerny-Turner光谱仪光学系统.通过分辨率、光谱范围等设计要求确定光谱仪大致结构后,引入初级像差对初始结构进行进一步优化.首次提出将球差约束条件与光阑面选取相结合,设计流程确定准直镜通光口径、光栅初始尺寸及聚焦镜中心波长对应口径,继而结合彗差约束条件,确定球面镜离轴角,并基于几何光学确定聚焦镜初始通光口径的方法.利用ZEMAX软件对初始参量进行模拟优化,并采用自主研制的样机进行光谱测量,分析结果表明,该光学系统能够在狭缝宽度为25μm,光栅常数为1.667μm/line条件下,实现中心波长分辨率优于1nm,边缘波长分辨率优于1.5nm.  相似文献   

2.
基于交叉非对称式切尔尼-特纳系统设计了一种宽光谱高分辨率微型分光系统,采用Zemax光学设计软件进行了光路设计、优化及像质分析后,得到了尺寸为70mm×42mm×15mm、波长范围为200~750nm、分辨率为1.5nm的分光系统,并搭建了实验光路对设计结果进行了性能验证,结果表明该系统满足了设计指标要求,具有小型化、高分辨率、结构简单、成本低等特点,可应用于水质在线自动分析仪器中进行多种水质参数的监测。  相似文献   

3.
单色仪是成像光谱仪进行光谱连续定标的必备设备,为了对高光谱成像光谱仪进行连续光谱定标,设计了一种轻小型高光谱分辨率的光栅单色仪。采用水平式Czerny-Turner光路结构,以高光谱分辨率为出发点,通过推导计算,从光栅选型、焦距计算、狭缝尺寸的确定等方面详细论述了光栅单色仪的设计思路,给出仪器的重要必要结构参数,并论述了这些结构参数对仪器光谱分辨率和体积的影响。根据光栅单色仪的光路特点,对入射狭缝组件、准直物镜组件和成像物镜组件、扫描结构、机身等进行轻小型机械结构设计,并给出正弦杆扫描机构的结构参数与仪器输出波长和波长扫描精度的数学关系,完成了仪器的整体结构设计和装调。应用汞灯可见光光谱进行波长定标,采用最小二乘法得到定标曲线,并提出步进数极限误差与定标曲线相结合的方法,求得仪器的波长重复性和波长准确度;仪器在400~800 nm波长范围内,光谱分辨率优于0.1 nm,波长重复性达±0.096 6 nm,波长准确度达±0.096 9 nm。  相似文献   

4.
光栅色散型成像光谱仪室内外光谱定标中心波长偏移研究   总被引:1,自引:0,他引:1  
成像光谱仪使用前需要对其进行光谱定标以确定其各光谱通道的中心波长和光谱带宽。但是室内外光谱定标实验结果表明随着使用环境的变化成像光谱仪各通道的中心波长和带宽将发生变化。对光栅色散型成像光谱仪各光谱通道的中心波长室内外定标结果的偏移进行研究,从光栅色散型成像光谱仪的光学结构和工作环境参数出发对造成其中心波长偏移的因素进行分析和建模,对震动、机械形变和浓度等主要影响因素进行理论推导和数量级估算,结合实验结果进行对比分析。理论推导和实验数据分析都表明光栅色散型成像光谱仪室内外光谱定标获得的各通道中心波长的偏移量与各通道的本征波长成二次函数的关系,其中震动和机械形变所带来的系统光路结构的细微改变是造成其中心波长偏移的主要因素,使用环境温度的差异也对该成像光谱仪各光谱通道的中心波长具有一定的影响。  相似文献   

5.
吕月兰  尹向宝  杨月  刘永军  苑立波 《物理学报》2017,66(15):154205-154205
本文提出了染料掺杂液晶填充空心光纤构造荧光可调谐光源.基于染料分子能级结构理论分析B4400荧光光谱依赖温度的变化特性,采用脉宽8 ns,波长为532 nm YAG倍频脉冲激光器抽运,向列相液晶作基体,实验分析染料B4400掺杂液晶填充空心光纤荧光光谱选择性荧光放大规律及温度调谐特性.结果表明:通过控制染料浓度可控制荧光输出功率水平;当温度升高时,中心波长发生红移,中心波长调谐范围为590—605 nm;荧光谱宽呈单调展宽,调制范围为228—236 nm;染料掺杂液晶填充空心光纤荧光光源可实现一定范围内的温度调谐.  相似文献   

6.
直视合成孔径激光成像雷达采用内发射场直接波面变换平动扫描发射,通过自差接收实现高分辨率成像。由于远场目标位置的光场分布取决于内发射光场,因此内发射场的波前像差会对激光雷达图像质量产生影响。采用Zernike多项式描述波前像差,对初级像差造成直视合成孔径激光成像雷达的成像影响进行了研究,理论分析和仿真结果表明:离焦、象散、彗差和球差对成像的影响最为严重,像差越大,其对成像分辨率的影响也越大。当像差的均方根值小于0.05λ时,对成像分辨率的影响很小,当像差的均方根值为0.25λ时,其象散和彗差引起成像分辨率近似增大到原来的3倍。彗差和球差还造成不同目标位置的成像分辨率不同,离中心位置越远,成像分辨率增加越快。  相似文献   

7.
对LaCl_3溶液拉曼和荧光光谱及其变化进行了理论计算和实验研究,得到了较为全面的光谱信息。基于密度泛函理论的B3LYP方法,在6-31G(d,p)+Def2-SV(p)基组水平上计算了氯化镧溶液中的微团簇结构,结果表明微团簇分子趋向于形成9配位结构,验证了计算方法的可行性。理论拉曼光谱与实验光谱相比基本一致,随着LaCl_3的加入溶液拉曼光谱在300~600cm~(-1)范围内峰的强度稍微增大,原因可能为La—O振动与水中O—H的面内、面外摇摆峰叠加形成的;在3 000~4 000cm~(-1)范围内,氯化镧溶液与水相比峰形变窄,可能是由于在溶液中原有的水团簇结构破坏后形成的镧水合物中O—H的伸缩振动导致。荧光发射光谱在350nm处出现明显的新峰,且与浓度呈良好的线性关系,从络合物角度实现了对氯化镧溶液的定量分析;同样的基组水平上计算了团簇的荧光发射中心,在误差允许范围内,理论计算与实验值基本吻合,实现了对实验光谱中新峰的指认与归属。  相似文献   

8.
一种光栅型成像光谱仪光学系统设计   总被引:3,自引:2,他引:1       下载免费PDF全文
 成像光谱仪是一种“图谱合一”的光学遥感仪器。从光栅型成像光谱仪的使用要求出发,利用Zemax软件设计了一种光栅型成像光谱仪光学系统。其中,前置望远物镜采用反射式结构,传统的卡塞格林结构在主次镜均采用非球面时校正像差的能力依然有限,设计时采用改进后的卡塞格林结构对像差进行校正,最终设计的望远镜头传函在50 lp/mm处达到0.5,场曲控制在0.078以内,且不存在畸变。针对光谱成像系统通常采用的基于平面光栅的Czerny-Turner结构由于像差校正能力有限、成像质量较差不能满足仪器的使用要求。采用基于凸面光栅的光谱成像系统,该系统结构紧凑、可实现宽波段内像差的同时校正。最终设计的光谱成像系统光谱分辨率<5 nm,MTF在50 lp/mm时升至0.75。将前置望远物镜与光谱成像系统根据匹配原则进行组合优化后光栅型成像光谱仪系统点列图RMS半径随波长的变化均小于0.2,波长的80%的能量集中在Φ6 μm范围内,波长各视场在特征频率50 lp/mm处的光学传递函数均大于0.5。整个光学系统具有结构简单、像差校正能力强、结构尺寸较小的优点。  相似文献   

9.
以宽光谱范围、 高分辨率的中阶梯光栅光谱仪为研制目标,介绍了中阶梯光栅的色散特性,阐述了基于它的交叉色散原理,提出了分辨率优先的中阶梯光栅-棱镜交叉色散光路设计方法,包括高分辨率的主色散光路设计、 分辨叠级的辅助色散光路设计,及主-辅色散光路联合校验三个递进的环节,并结合商用光谱仪进行了实例设计,仿真和实验表明,当光谱范围为400~900 nm时,该分光系统在Hg灯546 nm处的分辨率可达51 000,在Na光589 nm处的分辨率为44 000。  相似文献   

10.
为满足在各种谱线分布下对星敏感器探测能力的高准确度标定,提出了一种基于数字微镜器件的光谱可调星模拟器光源光学系统设计方法,以解决星模拟器与星敏感器观星色温不匹配对星敏感器光信号定标准确度产生的问题.首先,根据设计指标选取Czerny-Turner型光学系统为光源光学系统,对Czerny-Turner型光学系统的彗差和象散进行分析,选取消彗差的Czerny-Turner结构;其次利用MATLAB程序求解Czerny-Turner型光学系统初始结构并应用ZEMAX对其进行优化;最后对光学系统进行公差分析.公差分析结果表明,在400~1 100nm的工作谱段范围内,光学系统的光谱分辨率小于2nm,设计结果满足要求,有效降低了光谱不匹配带来的定标误差.  相似文献   

11.
介绍了一种基于谱线匹配技术的星上光谱定标方法,该定标方法选取大气吸收线作为匹配谱线,采用相关系数法作为匹配结果判定条件标进行光谱定标。为模拟星上定标过程,将谱线匹配技术应用于振动试验后的成像光谱仪,振动试验可以模拟成像光谱仪在升空过程中受到的振动。星上光谱定标包括成像光谱仪分辨率的确定、面阵探测器光谱维和空间维像元中心波长的定标。由定标结果可知,振动试验后光谱仪分辨率为0.40 nm,与振动试验前相比没有发生变化;光谱维像元中心波长向长波偏移0.08 nm(小于一个像元);空间维像元光谱弯曲(光谱smile) 向短波方向弯曲,最大弯曲值为0.96 nm,近似于振动试验前光谱弯曲值。由此验证了谱线匹配技术进行星上光谱定标的可行性。  相似文献   

12.
光谱定标是确定光谱仪器各通道中心波长的过程,为了获取光谱辐亮度,通常需要对光谱仪器进行辐射定标,将光谱仪器输出的数值,映射为物理量——辐亮度。不同的光谱仪器的光谱响应不同,因此还需要在光谱定标过程中确定各个通道的光谱响应。光谱成像仪可以看成是多个光谱仪组成的,需要对所有点的中心波长和光谱响应进行定标。自第一台成像光谱仪诞生以来,其定标方法逐渐固定,通常需要采用光谱分辨率较光谱成像仪更高的单色仪输出准单色光进行光谱定标,其准单色光的光谱带宽远小于光谱成像仪的光谱响应带宽,可以将准单色光抽象为脉冲函数。根据脉冲函数的特性,改变准单色光的波长,扫描光谱成像仪的响应波长范围,是对光谱响应函数进行间隔采样的过程,通过光谱定标数据可以直接得到光谱成像仪的中心波长和光谱响应函数。随着技术的发展,探测器的灵敏度越来越高,光谱成像仪的分辨率也越来越高,为了完成光谱定标,对光谱定标需要的准单色光提出了更高的要求。然而准单色光的带宽越窄,其能量越低,获取满足信噪比要求的数据需要更长的时间,使定标的效率降低。从光谱定标的目的出发,结合准单色光和光谱成像仪光谱响应近似高斯函数的特点,通过理论分析,提出一种利用宽带定标光进行光谱定标的方法,可以有效减少光谱定标的步骤,提高定标的效率,适用于光谱成像仪的快速定标。该方法用于某星载高光谱成像仪的光谱定标,待标定光谱成像仪采用棱镜分光,具有色散非线性的特点,光谱分辨率在2~18 nm之间变化,同时存在较大的谱线弯曲,导致每个像元的中心波长都不同,需要对每个像元进行光谱定标。为了避免分视场定标导致的相邻视场中心波长不连续现象,将单色仪发出的准单色光的光斑照亮整个狭缝,狭缝和单色仪之间放置柱透镜和毛玻璃,其中柱透镜用于汇聚垂直于狭缝方向的光线,提高能量利用率;毛玻璃用于匀化光照,毛玻璃的存在极大地减弱了进入光谱成像仪的能量,结合提出的方法,增加定标光的带宽,提高能量,最终完成了该光谱成像仪的快速定标,利用汞灯的特征光谱验证该成像光谱仪的光谱定标精度为0.23 nm。  相似文献   

13.
14.
We present a framework for the computational assessment and comparison of large-eddy simulation methods. We apply this to large-eddy simulation of homogeneous isotropic decaying turbulence using a Smagorinsky subgrid model and investigate the combined effect of discretization and model errors at coarse subgrid resolutions. We compare four different central finite-volume methods. These discretization methods arise from the four possible combinations that can be made with a second-order and a fourth-order central scheme for either the convective and the viscous fluxes. By systematically varying the simulation resolution and the Smagorinsky coefficient, we determine parameter regions for which a desired number of flow properties is simultaneously predicted with approximately minimal error. We include both physics-based and mathematics-based error definitions, leading to different error-measures designed to emphasize either errors in large- or in small-scale flow properties. It is shown that the evaluation of simulations based on a single physics-based error may lead to inaccurate perceptions on quality. We demonstrate however that evaluations based on a range of errors yields robust conclusions on accuracy, both for physics-based and mathematics-based errors. Parameter regions where all considered errors are simultaneously near-optimal are referred to as ‘multi-objective optimal’ parameter regions. The effects of discretization errors are particularly important at marginal spatial resolution. Such resolutions reflect local simulation conditions that may also be found in parts of more complex flow simulations. Under these circumstances, the asymptotic error-behavior as expressed by the order of the spatial discretization is no longer characteristic for the total dynamic consequences of discretization errors. We find that the level of overall simulation errors for a second-order central discretization of both the convective and viscous fluxes (the ‘2–2’ method), and the fully fourth-order (‘4–4’) method, is equivalent in their respective ‘multi-objective optimal’ regions. Mixed order methods, i.e. the ‘2–4’ and ‘4–2’ combinations, yield errors which are considerably higher.  相似文献   

15.
为满足航天应用中仪器小型和轻量化、大视场的观测要求,通过分析现有Offner成像光谱仪,给出了一种简单的采用凸面光栅设计成像光谱仪的方法。并据此方法设计了一应用于400 km高度,波段范围为0.4~1 μm,焦距为720 mm,F数为5,全视场大小为4.3°的分视场成像光谱仪系统。分视场采用光纤将望远系统的细长像面连接到光谱仪的三个不同狭缝而实现。三狭缝光谱面共用一个像元数为1 024×1 024,像元大小18 μm×18 μm的CCD探测器。通过ZEMAX软件优化和公差分析后,系统在28 lp·mm-1处MTF优于0.62,光谱分辨率优于5 nm,地面分辨率小于10 m,能很好的满足大视场应用要求,该光学系统刈幅宽度相当于国内已研制成功的同类最好仪器的三倍。  相似文献   

16.
在平场凹面全息光栅的没计制作中,不可避免的存在曲率半径误差,严重影响光栅光谱仪的分辨率.为了从理论上分析并指导光谱仪器的设计和装调,运用几何光线追迹方法计算并分析了不同曲率半径误差下光谱像宽度的变化规律,发现在一个较大的误差范围内子午焦线的位置随着曲率半径的变化前后平移,同时其弯曲程度几乎没有改变.数值计算发现通过调整像面位置或人臂长度均能够补偿曲率半径的误差.数值模拟结果显示,修正使用结构后的光栅能够达到与设计结果相近的成像质量.  相似文献   

17.
As feature size decreases, especially with the use of resolution enhancement technique, requirements for the coma aberrations in the projection lenses of the lithographic tools have become extremely severe. So, fast and accurate in situ measurement of coma is necessary. In the present paper, we present a new method for characterizing the coma aberrations in the projection lens using a phase-shifting mask and a transmission image sensor. By measuring the image positions at multiple NA and partial coherence settings, we are able to extract the coma aberration. The simulation results show that the accuracy of coma measurement increases approximately 20% compared to the previous straightforward measurement technique.  相似文献   

18.
高光谱分辨率紫外平场光谱仪的研制   总被引:1,自引:0,他引:1  
光栅作为一重要的分光元件,广泛应用于各类光谱仪,其中球面变线距平场光栅以其独特的平场特性使其容易与阵列探测器结合使用,一次实现宽光谱范围的记录。商业球面平场光栅一般只会提供光栅的公称线密度以及相应的安装参数,而不会提供光栅具体的变线距参数,并且提供的安装参数是针对整个使用波段优化的结果。使用者往往只需要其中的一部分波段。针对这种情况,根据球面平场光栅聚焦、分光原理,利用生产厂家提供的光学元件安装参数给出了推导球面变线距光栅变线距参数的方法。并给出了利用这些参数,根据光谱仪的实际工作波段确定最佳的CCD安装位置的方法。根据推导的光栅变线距参数可以对光学系统进行光学追迹已验证光学系统的性能。研制了一台高分辨率紫外平场光谱仪,覆盖光谱范围230~280 nm。采用的球面变线距光栅公称线密度为1 200 lines·mm-1,使用波段为170~500 nm。推导了该光栅的变线距参数,并针对230~280 nm波段对CCD的安装位置进行了优化。同时利用不同元素的标准光源空心阴极灯对光谱仪进行了波长标定和光谱分辨率测试。波长标定采用参数拟合法,整个波段范围内的标定精度优于0.01 nm。光谱分辨率测试的结果表明光谱仪的光谱分辨率达到0.08 nm@280.20 nm。  相似文献   

19.
李志刚 《物理》1999,(6):368
讨论了傅里叶变换光谱技术向短波段光学扩展的必要性和主要技术难点,分别介绍了几种应用于紫外、真空紫外及软X射线波段的傅里叶变换光谱仪结构性能与原理,并进一步阐述了高分辨率傅里叶变换光谱仪在短波段光学中的应用  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号