首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
闵琦  刘克 《物理学报》2011,60(2):24301-024301
由直径不同的两级直圆管连接而成的两级突变截面驻波管具有失谐性,即高阶共振频率不是一阶共振频率的整数倍. 两级突变截面驻波管的失谐性质能够很好地抑制一阶共振频率激励下的大振幅非线性驻波畸变产生的高次谐波,从而获得大振幅纯净驻波场. 通过对两级突变截面驻波管失谐性质的研究,采用大功率扬声器正接等措施,利用两级突变截面驻波管的失谐性质在一阶共振频率激励下获得了184 dB的极高纯净驻波场,并对二至五阶共振频率激励下的声场进行了相应的实验研究. 在二阶、四阶共振频率激励下分别获得了180和166 dB波形比较规整的大振幅非线性驻波,并在三阶、五阶共振频率激励下观察到了谐波饱和现象和锯齿波. 关键词: 失谐驻波管 大振幅驻波 畸变 饱和  相似文献   

2.
通过改进等截面驻波管实验系统,在1阶峰值共振频率激励下获得了182.1 dB大振幅驻波场,并对1~5阶峰值共振频率激励下的大振幅驻波场谐波饱和情况以及波形畸变进行了实验研究。研究发现,尽管1阶峰值共振频率激励下声压级已达到182.1 dB,但波形畸变最小,谐波并未表现出饱和现象,而3阶峰值共振频率激励下的大振幅驻波场表现出了饱和趋势。对谷值共振频率激励下获得的大振幅驻波场进行对比实验研究,发现谷值共振频率激励下,1阶谷值共振频率所获得的驻波场声压级最大,但波形畸变也最大。在相同声源驱动电压下,1阶峰值共振频率激励下获得的驻波场声压级始终大于1阶谷值共振频率激励下获得的驻波场声压级。由此可见,利用扬声器在等截面驻波管中获取大振幅驻波场,驻波管由1阶峰值共振频率激励较为合适。   相似文献   

3.
锥形渐变截面驻波管是用锥形管代替突变截面驻波管突变截面部分的驻波管.为对比研究锥形渐变截面驻波管与突变截面驻波管的声学及其极高纯净驻波场性质,首先借助传递矩阵,对锥形渐变截面驻波管的声学性质进行了实验研究.研究表明,与突变截面驻波管一样,锥形渐变截面驻波管也属于失谐驻波管.利用其失谐性,在一阶共振频率激励下,锥形渐变截面驻波管获得了181 dB的极高纯净驻波场.在对锥形渐变截面驻波管和等长的突变截面驻波管的驻波饱和性质进行对比实验研究后发现,在一阶共振频率下,锥形渐变截面驻波管不仅能很好地抑制管内驻波场高次谐波的增长,而且能有效地降低管内驻波场的能量损耗,在相同扬声器激励电压下获得声压级更高的大振幅纯净驻波场.实验研究还发现,在三阶共振频率激励下,锥形渐变截面驻波管的大振幅驻波场三次谐波频率接近声压级传递函数谷值对应的声源端七阶阻抗共振频率,三次谐波随基波快速增长并表现出趋于二次谐波的饱和性质.  相似文献   

4.
在一维有限振幅驻波声场中观察到了分岔现象。除了理论所预期的高次谐波存在外,次谐波、分数谐波亦存在于有限振幅驻波声场中。随基波声压级提高,最终达到混饨状态。  相似文献   

5.
在基波声压级(Lp1)为定值(148dB)的条件下,三次谐波变化曲线可用一“准周期”函数描述。其周期长度为驻波管的第一共振频率Δf=c0/2L。三次谐波的共振现象极有规律。共振峰处自身频率(f3=3f0)准确地与驻波管频率相吻合。而曲线谷值的自身频率并不与驻波管反共振频率相同。三次谐波在共振区必为峰值,在反共振区必为其谷值。而在其他频段则有尚待解释的现象。  相似文献   

6.
基于能量守恒原理对Rijke管热声效应展开了理论分析,采用内外流场耦合法数值模拟了Rijke管自激励起振和饱和过程的声场特性,并开展了相应的实验研究.推导了Rijke管起振、饱和及高次谐波产生过程中的能量变化,分析了Rijke管非线性效应包括高次谐波和波形畸变的影响因素,提出了改变管口声阻抗可弱化非线性效应的方法.结果...  相似文献   

7.
非线性驻波现象的数值模拟与实验结果的比较   总被引:3,自引:0,他引:3  
强非线性驻波实验研究发现很多重要的物理现象,如高次谐波成倍增长、饱和、分岔和混沌等。采用Euler方程和MacCormack四阶精度差分方法,成功地数值模拟了非线性驻波高次谐波成倍增长和饱和现象,并与相应的实验结果作了详细比较,符合很好。  相似文献   

8.
驻波是一个比较抽象的概念,较难理解,用气体火焰模拟驻波可以让我们更直观的研究声场产生的驻波。实验中发现火焰按波形变化的规律分布,用驻波波函数和伯努利方程对实验现象进行了理论分析,引入压节(波腹)、压腹(波节)解释在两端出现的高火焰现象。实验结果与理论分析接近一致。  相似文献   

9.
大振幅驻波在激波形成前的过程中,谐波声压级随基波声压级(Lp1)增长而出现饱和现象。在Lp1<153dB时,m次谐波声压振幅pm与基波声压幅值p1;呈pm~pm1关系。基波升高1dB,m次谐波升高mdB。之后,各次谐波均开始趋于饱和。次数越高,饱和越快,pm~pm1的关系逐渐变为pm~p1的趋向。在频率域内,变化过程大致可划分为三个区域:I.线性区;Ⅱ.变化区;Ⅲ.激波区。三个区域对应了时域的激波形成。Lp1>160dB后,即可认为激波已经形成。基波与电信号的关系也呈饱和现象,但与频率有关。上述结果有助于理论研究工作的进一步深入。  相似文献   

10.
研究了谐振管一端受活塞声源激励,另一端刚性封闭条件下,管道形状对热声发动机谐振管内部非线性声场的影响。基于流体力学基本方程建立了渐变截面谐振管内一维非线性声场的模型,考虑了黏性耗散及非线性效应的影响。利用伽辽金法数值求解了该模型的速度势方程,分析了谐振管形状、活塞振动速度及激励频率对管内声场的影响。将双曲形、指数形、锥形、正弦形等四种变截面谐振管内的非线性声场与圆柱形直管的情况进行了比较。结果反映了谐振管内声场的压力波动受活塞振动速度及谐振管形状的影响;显示了当活塞振动幅度较大时,谐振管内出现的波形畸变、频率曲线偏移、共振频率滞后等非线性现象;揭示了变截面谐振管在抑制管内的高阶谐波及提高压比等方面的优越性。   相似文献   

11.
Standing-wave tube with abrupt section (STAS) was a dissonant standing-wave tube whose higher resonance frequencies were not integral multiplies of the first one. Making use of the dissonant property of STAS and through the optimization of the system, extremely nonlinear pure standing-wave field of 180 dB at the first resonance frequency and that of 177 dB at the second resonance frequency have been obtained. At the two resonance frequencies, distortion of waveform and saturation of harmonics were studied experimentally, but saturation did not appear even though under such high sound pressure levels. However, while nonlinear sound field was experimentally studied at the third resonance frequency, it was found that the frequency for the second harmonic of the third resonance frequency was close to the sixth resonance frequency of the STAS and the distortion of waveform and the saturation of harmonies appeared as the sound pressure level approached 170 dB.  相似文献   

12.
A large-amplitude standing-wave field of 182.1 dB is obtained under the excitation at the resonant frequency of the lst-order peak of the sound pressure transfer function in an improved standing-wave tube experimental system,and saturation of harmonics and waveform distortion are investigated experimentally for the large-amplitude standing-wave fields obtained under the excitations at the resonant frequencies of the 1 st-to the 5 th-order peaks.The results show that although the sound pressure level has reached 182.1 dB under the excitation at the resonant frequency of the 1 st-order peak,the waveform distortion is the minimum and the harmonic saturation is not observed.However,the large-amplitude standing-wave field excited at the resonant frequency of the 3 rd-order peak exhibits the trend of the harmonic saturation.Comparison of the large-amplitude standing-wave fields obtained under the excitations at valley resonant frequencies shows that the standing-wave field excited at the resonant frequency of the 1 st-order valley has the largest SPL,but also has the largest waveform distortion.Under the same source-driving voltage,the standing-wave field excited at the resonant frequency of the 1 st-order peak always has greater SPL than the standing-wave field excited at the resonant frequency of the 1 st-order valley.Hence,to obtain a large-amplitude standing-wave field,it's better to excite at the resonant frequency of the 1 st-order peak of the SPTF by using loudspeaker in a standing-wave tube with uniform cross section.  相似文献   

13.
A standing-wave tube with tapered section(STTS) was evolved from a standing-wave tube with abrupt section(STAS) whose abrupt section was replaced with tapered section. The research was intended to compare the acoustic properties and the extremely nonlinear pure standing waves of STTS with those of STAS.The acoustic properties of the STTS were studied with transfer matrix.It was proved,like the STAS,that the STTS was dissonant standing-wave tube.With its dissonant property,the 181 dB extremely nonlinear pure standing wave was obtained in the STTS excited at its first resonance frequency.Then the comparative experimental studies on the saturation properties of the extremely nonlinear standing waves were carried out in the STTS and the STAS with the same length.It was found that the STTS could suppress the harmonics and meanwhile reduce energy loss of the standing wave more effectively.Compared with the STAS,under the same voltage of loudspeaker,the STTS obtained a higher extremely nonlinear pure standing wave.Moreover,it was found for the STTS that the third harmonic of the third resonance frequency was close to the seventh resonance frequency of sound source impedance,to which the valley value of the sound pressure level transfer function corresponded.Because of this,the third harmonic increased rapidly with the increase of fundamental wave and tended to saturate.  相似文献   

14.
Improved contrast to tissue ratio at higher harmonics   总被引:4,自引:0,他引:4  
The challenge in ultrasound contrast imaging is a better discrimination between the perfused tissue and the contrast bubbles, which is usually expressed by contrast to tissue ratio (CTR). Imaging based on the second harmonic frequency showed a higher CTR than imaging at the fundamental frequency. However, because of nonlinear propagation of ultrasound waves, harmonic frequencies are generated. These harmonic frequencies will be linearly reflected by the tissue and therefore limit the CTR at the second harmonic frequency. In order to reduce the scattering of tissue at harmonic frequencies and by that increase the CTR, nonlinear distortion has to be reduced. We demonstrate in this study that the CTR increases with the harmonic number. The increase is substantial when transmitting at lower frequencies. To take advantage of the higher harmonics (third, fourth, fifth and the ultraharmonics and termed here super harmonics), we have developed a new phased array transducer with a wide frequency band. In-vitro measurements using the new probe show an increase of 40 dB of the CTR for super harmonic components over the conventional second harmonic system. The increase in CTR is in agreement with the calculations using existing models for the response of encapsulated bubbles and known theory of nonlinear propagation.  相似文献   

15.
Based on the energy conservation relationship,nonlinear thermo-acoustic effects of Rijke tube including instability range,saturation processes and higher harmonics modes were investigated.With coupling between the external flow and the inner space of a Rijke tube, the acoustic characteristics of self-excited oscillation were simulated.The experimental study was also carried out and the results were compared with those from simulation.The nonlinear factors which distort the acoustic waveform distortion were analyzed.From the results,it is seen that varying size of the nozzle outlet changes the acoustic impedance in the boundary, and leads to reduction of the nonlinear effects.The results show that the modes of self-excited oscillation could be influenced by the position of higher harmonics.In the large amplitude oscillation,the distortion of pressure wave within Rijke tube could be induced by the acoustic losses due to vortices on nozzle.It is found that the waveform distortion could be avoided by the shrinkage of nozzle.  相似文献   

16.
I.IntroductionInrecentyears,theresearchworkonnonlinearacousticshasbeendcvelopedrapid1ybe-causethehigh-intensitysoundismoreandmoreimportantincontcmporarytechnology.Aerodynamicnoiseemittedbyrockctorjetengines,noisetestofairframcs,u1trasonicpro-cessing,andothcrs,a1linvo1vefinitc-amplitudesoundwavesand,mostlystandingwaves.Athcoryofonc-dimensiona1finitc-amp1itudestandingwavesinlosslessmediahasbeenproposedbyMAAonthebasisofthcfundamenta1principlesofhydrodynamics['l,inwhichformulasofstcadywavcformsa…  相似文献   

17.
The influence of the resonator shape on nonlinear acoustic field in a thermoacoustic engine is studied.The resonator of themoacoustic engine is boundary driving by a piston at one end,and the other end of it is rigid closed.A one-dimensional wave equation that accounts for gas dynamic nonlinearities and viscous dissipation in the resonator is established based on the governing equations of viscous hydromechanics.The nonlinear wave equation is solved using approximate Galerkin method.The nonlinear acoustic field in four different types of shaped resonators including hyperbolical,exponential,conical and sinusoidal are obtained and compared with that of a cylindrical resonator.It is found that the amplitude and waveform of the pressure are strongly affected by the resonator shape,the driving amplitude and the oscillation frequency of the piston.Waveform distortion,resonance frequency shift and hysteresis are observed,when the piston oscillation amplitude is large enough.The advantages of shaped resonator for thermoacoustic engine lie in inhibition of higher order harmonics and improvement of pressure ratio,etc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号