首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Highly transparent conductive Al2O3 doped zinc oxide (AZO) thin films have been deposited on the glass substrate by pulsed laser deposition technique. The effects of substrate temperature and post-deposition annealing treatment on structural, electrical and optical properties of AZO thin films were investigated. The experimental results show that the electrical resistivity of films deposited at 240 °C is 6.1 × 10−4 Ω cm, which can be further reduced to as low as 4.7 × 10−4 Ω cm by post-deposition annealing at 400 °C for 2 h in argon. The average transmission of AZO films in the visible range is 90%. The optical direct band gap of films was dependent on the substrate temperature and the annealing treatment in argon. The optical direct band gap value of AZO films increased with increasing annealing temperature.  相似文献   

2.
Aluminum doped zinc oxide (AZO) films were substitutes of the SnO2:F films on soda lime glass substrate in the amorphous thin-film solar cells due to good properties and low cost. In order to improve properties of AZO films, the TiO2 buffer layer had been introduced. AZO films with and without TiO2 buffer layer were deposited on soda lime glass substrates by r.f. magnetron sputtering. Subsequently, one group samples were annealed in vacuum (0.1 Pa) at 500 °C for 120 s using the RTA system, and the influence of TiO2 thickness on the properties of AZO films had been discussed. The XRD measurement results showed that all the films had a preferentially oriented (0 0 2) peak, and the intensity of (0 0 2) peak had been enhanced for the AZO films with TiO2 buffer layer. The resistivity of TiO2 (3.0 nm)/AZO double-layer film is 4.76×10−4 Ω cm with the maximum figure merit of 1.92×10−2 Ω−1, and the resistivity has a remarkable 28.7% decrease comparing with that of the single AZO film. The carrier scattering mechanism of TiO2 (3.0 nm)/AZO double-layer film had been described by Hall measurement in different temperatures. The average transmittance of all the films exceeded 92% in the visible spectrum. Another group samples were heat treated in the quartz tube in air atmosphere, and the effect of TiO2 thickness on thermal stability of AZO films had been discussed.  相似文献   

3.
Aluminum-doped zinc oxide (AZO) films were deposited at 400 °C by radio-frequency magnetron sputtering using a compound AZO target. The effects of annealing atmospheres as well as hydrogen annealing temperatures on the structural, optical and electrical properties of the AZO films were investigated. It was found that the electrical resistivity varied depending on the atmospheres while annealing in air, nitrogen and hydrogen at 300 °C, respectively. Comparing with that for the un-annealed films, the resistivity of the films annealed in hydrogen decreased from 9.8 × 10−4 Ω cm to 3.5 × 10−4 Ω cm, while that of the films annealed in air and nitrogen increased. The variations in electrical properties are ascribed to both the changes in the concentration of oxygen vacancies and adsorbed oxygen at the grain boundaries. These results were clarified by the comparatively XPS analyzing about the states of oxygen on the surface of the AZO films. There was great increase in electrical resistivity due to the damage of the surfaces, when AZO films were annealed in hydrogen with a temperature higher than 500 °C, but high average optical transmittance of 80-90% in the range of 390-1100 nm were still obtained.  相似文献   

4.
Fluorine and hydrogen co-doped ZnO:Al (AZO) films were prepared by radio frequency (rf) magnetron sputtering of ZnO targets containing 1 wt.% Al2O3 on Corning glass at substrate temperature of 150 °C with Ar/CF4/H2 gas mixtures, and the structural, electrical and optical properties of the as-deposited and the vacuum-annealed films were investigated. In as-deposited state, films with fairly low resistivity of 3.9-4 × 10−4 Ω cm and very low absorption coefficient below 900 cm−1 when averaged in 400-800 nm could be fabricated. After vacuum-heating at 300 °C, the minimum resistivity of 2.9 × 10−4 Ω cm combined with low absorption loss in visible region, which enabled the figure of merit to uplift as high as 4 Ω−1, could be obtained for vacuum-annealed film. It was shown that, unlike hydrogenated ZnO films which resulted in degradation upon heating in vacuum at moderately high temperature, films with fluorine addition could yield improved electrical properties mostly due to enhanced Hall mobility while preserving carrier concentration level. Furthermore, stability in oxidizing environment could be improved by fluorine addition, which was ascribed to the filling effect of dangling bonds at the grain boundaries. These results showed that co-doping of hydrogen and fluorine into AZO films with low Al concentration could be remarkably compatible with thin film solar cell applications.  相似文献   

5.
The effect of the dopants of Cr and V on the optoelectronic properties of AZO thin film by pulsed DC magnetron sputtering has been investigated. We also use HCl and KOH solutions to conduct the chemical stability of AZO:Cr:V thin film. The experimental results show that the optimum AZO optoelectronic properties without Cr and V doping obtain the resistivity of 9.87 × 10−4 Ω cm, optical transmittance of 84% and surface roughness rms value of 2.6 nm. The chemical stability of AZO will increase after Cr and V doping. Under the added V = 0.19 wt.%, Cr = 0.56 wt.%, AZO:Cr:V thin film showed 52% increased chemical stability and 128% decrease in surface roughness after etching (the resistivity was 3.62 × 10−3 Ω cm and optical transmittance 81%). From the experimental results, the higher resistivity obtained after KOH etching compared with after HCl etching. The reason is that the Zn/Al ratio will reduce after etching and cause the AZO film carrier density to reduce as well. However, the optical transmittance obtained after KOH etching will be higher than that after HCl etching. This is because that a better surface roughness after KOH etching obtained than after HCl etching.  相似文献   

6.
Deposition of Al-doped ZnO (AZO) films with various film thicknesses on glass substrates was performed to investigate the feasibility of using AZO films as anode electrodes in organic light-emitting devices (OLEDs). The electrical resistivity of the AZO films with a 180-nm thickness was 4.085 × 10−2 Ω cm, and the average optical transmittance in the visible range was 80.2%. The surface work function for the AZO films, determined from the secondary electron emission coefficients obtained with a focused ion beam, was as high as 4.62 eV. These results indicate that AZO films grown on glass substrates hold promise for potential applications as anode electrodes in high-efficiency OLEDs.  相似文献   

7.
Transparent conducting Al-doped ZnO (AZO) thin films have been deposited by sol-gel route. Starting from an aqueous solution of zinc acetate by adding aluminum chloride as dopant, a c-axis oriented polycrystalline ZnO thin film 100 nm in thickness could be spin-coated on glass substrates via a two-step annealing process under reducing atmosphere. The effects of thermal annealing and dopant concentration on the structural, electrical and optical properties of AZO thin films were investigated. The post-treated AZO films exhibited a homogenous dense microstructure with grain sizes less than 10 nm as characterized by SEM photographs. The annealing atmosphere has prominent impact on the crystallinity of the films which will in turn influence the electrical conductivity. By varying the doping concentrations, the optical and electrical properties could be further adjusted. An optimal doping concentration of Al/Zn = 2.25 at.% was obtained with minimum resistivity of 9.90 × 10−3 Ω-cm whereas the carrier concentration and mobility was 1.25 × 1020 cm−3 and 5.04 cm2 V−1 s−1, respectively. In this case, the optical transmittance in the visible region is over 90%.  相似文献   

8.
Quasi-crystal aluminum-doped zinc oxide (AZO) films were prepared by in situ radio frequency (RF) magnetron sputtering (sputtering without annealing) on glass substrates. The influence of deposition parameters on the optoelectronic and structural properties of the in situ deposited quasi-crystal AZO films was investigated in order to compare resulting samples. X-ray diffraction (XRD) patterns show that the quasi-crystal AZO thin films have excellent crystallization improved with increase of the RF power and substrate temperature, with an extremely preferential c-axis orientation exhibit sharp and narrow XRD pattern similar to that of single-crystal. Field emission scanning electron microscopy (FESEM) images show that quasi-crystal AZO thin films have uniform grains and the grain size increase with the increase of RF power and substrate temperature. Craters of irregular size with the columnar structure are observed in the quasi-crystal AZO thin films at a lower substrate temperature while many spherical shaped grains appeared at a higher substrate temperature. The average optical transmittance of all the quasi-crystal AZO films was over 85% in the 400-800 nm wavelength range. The resistivity of 4.176 × 10−4 Ω cm with the grain size of 76.4891 nm was obtained in the quasi-crystal AZO thin film deposited at 300 °C, under sputtering power of 140 W.  相似文献   

9.
Transparent conducting thin films of fluorine-doped tin oxide (FTO) have been deposited onto the preheated glass substrates of different thickness by spray pyrolysis process using SnCl4·5H2O and NH4F precursors. Substrate thickness is varied from 1 to 6 mm. The films are grown using mixed solvent with propane-2-ol as organic solvent and distilled water at optimized substrate temperature of 475 °C. Films of thickness up to 1525 nm are grown by a fine spray of the source solution using compressed air as a carrier gas. The films have been characterized by the techniques such as X-ray diffraction, optical absorption, van der Pauw technique, and Hall effect. The as-deposited films are preferentially oriented along the (2 0 0) plane and are of polycrystalline SnO2 with a tetragonal crystal structure having the texture coefficient of 6.19 for the films deposited on 4 mm thick substrate. The lattice parameter values remain unchanged with the substrate thickness. The grain size varies between 38 and 48 nm. The films exhibit moderate optical transmission up to 70% at 550 nm. The figure of merit (φ) varies from 1.36×10−4 to 1.93×10−3 Ω−1. The films are heavily doped, therefore degenerate and exhibit n-type electrical conductivity. The lowest sheet resistance (Rs) of 7.5 Ω is obtained for a typical sample deposited on 4 mm thick substrate. The resistivity (ρ) and carrier concentration (nD) vary over 8.38×10−4 to 2.95×10−3 Ω cm and 4.03×1020 to 2.69×1021 cm−3, respectively.  相似文献   

10.
This paper studies the wet etching behavior of AZO (ZnO:Al) transparent conducting film with tetramethylammonium hydroxide (TMAH). The optimum optoelectronic film is prepared first using designated RF power, film thickness and controlled annealing heat treatment parameters. The AZO film is then etched using TMAH etchant and AZ4620 photoresist with controlled etchant concentration and temperature to examine the etching process effect on the AZO film optoelectronic properties. The experimental results show TMAH:H2O = 2.38:97.62 under 45 °C at the average etch rate of 22 nm/min as the preferred parameters. The activation energy drops as the TMAH concentration rises, while the etch rate increases along with the increase in TMAH concentration and temperature. After lithography, etching and photoresist removal, the conductivity of AZO film dramatically drops from 2.4 × 10−3 Ω cm to 3.0 × 10−3 Ω cm, while its transmittance decreases from 89% to 83%. This is due to the poor chemical stability of AZO film against AZ4620 photoresist, leading to an increase in surface roughness. In the photoresist postbaking process, carbon atoms diffused within the AZO film produce poor crystallinity. The slight decreases in zinc and aluminum in the thin film causes a carrier concentration change, which affect the AZO film optoelectronic properties.  相似文献   

11.
The correlation between the resistivity and the structure/composition in the aluminum doped zinc oxide (AZO) films fabricated by the ion beam co-sputtering deposition at room temperature was investigated. The various compositions of AZO films were controlled by the sputtered area ratio of Al to Zn target. The structure, Al concentrations and resistivities of the as-deposited films were determined by X-ray diffractometer (XRD), energy dispersive spectrometer (EDS) and four-point probe station, respectively. The lowest resistivity of the deposited film was 5.66 × 10−4 Ω-cm at the 0.7 wt.% aluminum concentration. The most intense ZnO (0 0 2) diffraction peak, the largest grain size, the longest mean free path, and the highest free carrier concentration in the film result in the lowest resistivity of 5.66 × 10−4 Ω-cm at room temperature; simultaneously, the thermal stability of the resistivity of the AZO film as a function of the sample temperature was investigated. Below 200 °C the film's resistivity was almost kept at a fixed value and the lowest resistivity of 4.64 × 10−4 Ω-cm at 247 °C was observed.  相似文献   

12.
ZnO films doped with Ga (GZO) of varying composition were prepared on Corning glass substrate by radio frequency magnetron sputtering at various deposition temperatures of room temperature, 150, 250 and 400 °C, and their temperature dependent photoelectric and structural properties were correlated with Ga composition. With increasing deposition temperature, the Ga content, at which the lowest electrical resistivity and the best crystallinity were observed, decreased. Films with optimal electrical resistivity of 2-3 × 10−4 Ω cm and with good crystallinity were obtained in the substrate temperature range from 150 to 250 °C, and the corresponding CGa/(CGa + CZn) atomic ratio was about 0.049. GZO films grown at room temperature had coarse columnar structure and low optical transmittance, while films deposited at 400 °C yielded the highest figure of merit (FOM) due to very low optical absorption despite rather moderate electrical resistivity slightly higher than 4 × 10−4 Ω cm. The optimum Ga content at which the maximum figure of merit was obtained decreased with increasing deposition temperature.  相似文献   

13.
IrO2 thin films were prepared on Si(1 0 0) substrates by laser ablation. The effect of substrate temperature (Tsub) on the structure (crystal orientation and surface morphology) and property (electrical resistivity) of the laser-ablated IrO2 thin films was investigated. Well crystallized and single-phase IrO2 thin films were obtained at Tsub = 573-773 K in an oxygen partial pressure of 20 Pa. The preferred orientation of the laser-ablated IrO2 thin films changed from (2 0 0) to (1 1 0) and (1 0 1) depending on Tsub. With the increasing of Tsub, both the surface roughness and crystallite size increased. The room-temperature electrical resistivity of IrO2 thin films decreased with increasing Tsub, showing a low value of (42 ± 6) × 10−8 Ω m at Tsub = 773 K.  相似文献   

14.
High quality transparent conductive ZnO thin films were deposited on quartz glass substrates using pulsed laser deposition (PLD). We varied the growth conditions such as the substrate temperature and oxygen pressure. X-ray diffraction (XRD), X-ray photoelectron spectrometer (XPS), and atomic force microscopy (AFM) measurements were done on the samples. All films show n-type conduction, the best transparent conductive oxide (TCO) performance (Al-doped ZnO = 1.33 × 10−4 Ω cm, Ga-doped ZnO = 8.12 × 10−5 Ω cm) was obtained on the ZnO film prepared at pO2 = 5 mTorr and Ts = 300 °C.  相似文献   

15.
Al-doped ZnO (AZO) transparent conducting films were successfully prepared on glass substrates by RF magnetron sputtering method under different substrate temperatures. The microstructural, electrical and optical properties of AZO films were investigated in a wide temperature range from room temperature up to 350 °C by X-ray Diffraction (XRD), Field-Emission Scanning Electron Microscopy (FESEM), High-Resolution Transmission Electron Microscopy (HRTEM), Hall measurement, and UV–visible meter. The nature of AZO films is polycrystalline thin films with hexagonal wurtzite structure and a preferred orientation along c-axis. The crystallinity and surface morphologies of the films are strongly dependent on the growth temperature, which in turn exerts a great effect on microstructural, electrical and optical properties of the AZO films. The atomic arrangement of AZO film having an wurtzite structure was indeed identified by the HRTEM as well as the Selected Area Electron Diffraction (SAED). The defect density of AZO film was investigated by HRTEM. The film deposited at 100 °C exhibited the relatively well crystallinity and the lowest resistivity of 3.6 × 10−4 Ω cm. The average transmission of AZO films in the visible range is all over 85%. More importantly, the low-resistance and high-transmittance AZO film was also prepared at a low temperature of 100 °C.  相似文献   

16.
Transparent conducting indium tin oxide (ITO) thin films were prepared on glass substrates by a magnetron sputter type negative ion source which requires cesium (Cs) vapor injection for surface negative ionization on the ITO target surface. Although the film was prepared at 70 °C, it attained high optical transmittance, 88% and low resistivity, 2.03 × 10−4 Ω cm, at an optimized Cs partial pressure of PCs = 1.7 × 10−3 Pa. The as-deposited ITO films have a poly-crystalline structure with (2 1 1), (2 2 2), (4 0 0), (4 1 1) and (4 4 0) reflections.Also, ITO films prepared at PCs = 1.7 × 10−3 Pa were post-deposition vacuum annealed at 300 °C for 30 min. The films had a resistivity of 1.8 × 10−4 Ω cm and a transparency of 89.2%. The post-deposition vacuum annealed ITO film was used as an anode for a transparent organic light emitting diode (TOLED). A maximum luminance of 19,000 cd/m2 was obtained.  相似文献   

17.
Al-doped ZnO (AZO) transparent conductive thin films were grown by magnetron sputtering with AZO (98 wt.% ZnO, 2 wt.% Al2O3) ceramic target in Ar + H2 ambient at a relatively low temperature of 100 °C. To investigate the dependence of crystalline and properties of as-grown AZO films on the H2-flux, X-ray diffraction (XRD), X-ray photoemission spectrometer (XPS), Hall and transmittance spectra measurements were employed to analyze the AZO samples deposited with different H2-flux. The results indicate that H2-flux has a considerable influence on the transparent conductive properties of AZO films. The resistivity of 4.15 × 10−4 Ω cm and the average transmittance of more than 94% in the visible range were obtained with the optimal H2-flux of 1.0 sccm. Such a low temperature growing method present here may be especially useful for some low-melting point photoelectric devices and substrates.  相似文献   

18.
Thin films of ZnO have been prepared on glass substrates at different thicknesses by spray pyrolysis technique using 0.2 M aqueous solution of zinc acetate. X-ray diffraction reveals that the films are polycrystalline in nature having hexagonal wurtzite type crystal structure. The resistivity at room temperature is of the order 10−2 Ω cm and decreased as the temperature increased. Films are highly transparent in the visible region. The dependence of the refractive index, n, and extinction coefficient, k, on the wavelength for a sprayed film is also reported. Optical bandgap, Eg, has been reported for the films. A shift from Eg = 3.21 eV to 3.31 eV has been observed for deposited films.  相似文献   

19.
Ga doped ZnO (GZO) thin films were deposited on glass substrates at room temperature by continuous composition spread (CCS) method. CCS is thin films growth method of various GaxZn1−xO(GZO) thin film compositions on a substrate, and evaluating critical properties as a function position, which is directly related to material composition. Various compositions of Ga doped ZnO deposited at room temperature were explored to find excellent electrical and optical properties. Optimized GZO thin films with a low resistivity of 1.46 × 10−3 Ω cm and an average transmittance above 90% in the 550 nm wavelength region were able to be formed at an Ar pressure of 2.66 Pa and a room temperature. Also, optimized composition of the GZO thin film which had the lowest resistivity and high transmittance was found at 0.8 wt.% Ga2O3 doped in ZnO.  相似文献   

20.
Highly conducting and transparent thin films of molybdenum-doped indium oxide were deposited on quartz by pulsed laser deposition. The effect of growth temperature and oxygen partial pressure on the structural, optical and electrical properties was studied. We find that the film transparency depends on the growth temperature. The average transmittance of the films grown at different temperatures is in range of 48-87%. The X-ray diffraction results show that the films grown at low temperature are amorphous while the films grown at higher temperature are crystalline. Electrical properties are found to be sensitive to both the growth temperature and oxygen pressure. Resistivity of the films decreases from 1.3 × 10−3 Ω cm to 8.9 × 10−5 Ω cm while mobility increases from 9 cm2/V s to 138 cm2/V s as the growth temperature increases from room temperature to 700 °C. However, with increase in oxygen pressure, resistivity increases but the mobility decreases after attaining a maximum. The temperature-dependent resistivity measurements show transition form semiconductor to metallic behavior. The film grown at 500 °C under an oxygen pressure of 1.0 × 10−3 mbar is found to exhibit high mobility (250 cm2/V s), low resistivity (6.7 × 10−5 Ω cm), and relatively high transmittance (∼90%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号