首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The electrical conductances of very dilute solutions of the ionic liquids 1-ethyl-3-methylimidazolium tetrafluoroborate [emim][BF4] and 1-butyl-3-methylimidazolium tetrafluoroborate [bmim][BF4] in the low-permittivity solvent dichloromethane have been measured in the temperature range from 278.15 to 303.15 K at 5 K intervals. The data was analyzed assuming the possible presence of contact (CIP) and solvent-separated (SSIP) ion pairs in the solution on the basis of lcCM model to obtain ionic association constants, K A, and the limiting molar conductivities, Λo, of these electrolytes. The examined ionic liquids are strongly associated in dichloromethane over the whole temperature range. From the temperature dependence of the limiting molar conductivities, the Eyring’s activation enthalpy of charge transport was determined. The thermodynamic functions such as Gibbs energy, entropy, and enthalpy of the process of ion pair formation were calculated from the temperature dependence of the association constants.  相似文献   

2.
In this work, we have used a simple equation of state (EoS) to predict the density and other thermodynamic properties such as isobaric expansion coefficient, αP , isothermal compressibility, κT, and internal pressure, Pi, for nine ionic liquids including trihexyl (tetradecyl) phosphonium chloride ([(C6H13)3P(C14H29)][Cl]), trihexyl (tetradecyl) phosphonium acetate ([(C6H13)3P(C14H29)][Ac]), trihexyl (tetradecyl) phosphonium bis {(trifluoromethyl) sulfonyl} amide ([(C6H13)3P(C14H29)][NTf2]), 1-butyl-3-methylimidazolium bis {(trifluoromethyl) sulfonyl} amide ([bmim][NTf2]), 1-hexyl-3-methylimidazolium bis {(trifluoromethyl) sulfonyl} amide ([hmim][NTf2]), 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]), 1-butyl-3-octylimidazolium tetrafluoroborate ([omim][BF4]), 1-butyl-3-octylimidazolium hexafluorophosphate ([omim][PF6]), and 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) at different temperatures and pressures. A wide comparison with experimental and literature data has been made. The results show that this EoS can be used to reproduce and predict different thermodynamic properties of ionic liquids within experimental errors.  相似文献   

3.
Two kinds of room‐temperature ionic liquids, 1‐butyl‐3‐methylimidazolium bromide ([BMIM]Br) and 1‐butyl‐3‐methylimidazolium tetrafluoroboride ([BMIM]BF4), were used as solvent, and the adsorption of the ionic liquids themselves and of N‐methylimidazole (NMIM) were investigated by electrochemical surface‐enhanced Raman scattering (SERS) over a wide potential window. The results revealed that the cation of ionic liquid adsorbed onto Cu surface with different configurations in different potential ranges. When the potential was changed from the negative to the positive range, the orientation underwent a change from flat to vertical, and the onset potential for the orientation change was dependent on the types of anion of the ionic liquid. The ionic liquid in bulk solution exhibited a remarkable effect on the adsorption of NMIM. The electrode surface structure changed from adsorbing the ionic liquid at the negative potential to coadsorbing the ionic liquid and NMIM at relative positive potential for the [BMIM]BF4 liquids, and formed films of NMIM at extremely positive potential. Due to the strong specific adsorption of Br, the coadsorption of ionic liquid and NMIM was not observed in the system [BMIM]Br. By simulating the electrode surroundings, two surface complexes [Cu(NMIM)4Br]Br·H2O and [Cu(NMIM)4](BF4)2 were synthesized by the electrochemical method in the corresponding ionic liquids for modeling the surface coordination chemistry of NMIM. The surface coordination configuration of NMIM and ionic liquids is proposed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
In this work, a comparison between the temperatures/pressures within acoustic cavitation bubble in an imidazolium-based room-temperature ionic liquid (RTIL), 1-butyl-3-methylimidazolium bis(triflluoromethyl-sulfonyl)imide ([BMIM][NTf2]), and in water has been made for a wide range of cavitation parameters including frequency (140–1000 kHz), acoustic intensity (0.5–1 W cm−2), liquid temperature (20–50 °C) and external static pressure (0.7–1.5 atm). The used cavitation model takes into account the liquid compressibility as well as the surface tension and the viscosity of the medium. It was found that the bubble temperatures and pressures were always much higher in the ionic liquid compared to those predicted in water. The valuable effect of [BMIM][NTf2] on the bubble temperature was more pronounced at higher acoustic intensity and liquid temperature and lower frequency and external static pressure. However, confrontation between the predicted and the experimental estimated temperatures in ionic liquids showed an opposite trend as the temperatures measured in some pure ionic liquids are of the same order as those observed in water. The injection of liquid droplets into cavitation bubbles, the pyrolysis of ionic liquids at the bubble-solution interface as well as the lower number of collapsing bubbles in the ionic liquid may be the responsible for the lower measured bubble temperatures in ionic liquids, as compared with water.  相似文献   

5.
This study examined the acoustic phonon mode of ionic liquids consisting of 1-alkyl-3-methyl-imidazolium family (CnMIM) cations with n values ranging from 2 to 10 and bis(trifluoromethylsulfonyl)amide (TFSA) anion in the temperature range from 300 K to 100 K. [CnMIM]+[TFSA]? showed depolarized (VH) components of Brillouin peaks at temperatures below the glass transition temperature when n is larger than 4. On the other hand, in the case of ionic liquids with different anions, such as [C4MIM]+[BF4]?, [C4MIM]+[PF6]? and [C8MIM]+[BF4]?, the VH component of Brillouin peaks was not observed in the temperature range investigated. The dielectric loss spectra showed that the temperature dependence of alkyl chain domain relaxation of all ionic liquids followed the Arrhenius law and showed an increase in activation energy at the temperature where the VH component of Brillouin peak appeared. These results suggest that the observed depolarized component of Brillouin peak might originate from uniquely induced polarization in the 2nd domain composed of head groups of cations and anions.  相似文献   

6.
Densities and speeds of sound have been measured for the binary mixtures of ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate [bmim][PF6] with ethylene glycol monoethyl ether (EGMEE), diethylene glycol monoethyl ether (Di-EGMEE), triethylene glycol monoethyl ether (Tri-EGMEE) over the whole composition range at atmospheric pressure. Experimental densities have been used to estimate excess molar volumes, VE. Changes in isentropic compressibility, Δκs have been estimated by using experimental speed of sound and density values. Excess properties were fitted to the Redlich-Kister polynomial equation to obtain the binary coefficients and the standard errors. The molecular scale interactions between ionic liquid and alkoxyalkanols have been investigated through 1H NMR spectroscopy. NMR chemical shifts for hydroxyl group of alkoxyalkanols and their deviations show hydrogen bonding interactions of varying strengths between ionic liquid and alkoxyalkanol in their binary mixtures.  相似文献   

7.
In this work, the effect of dual-frequency ultrasound-assisted ionic liquids (ILs) pretreatment on the functional properties of soy protein isolate (SPI) hydrolysates was investigated. The degree of hydrolysis (DH) of SPI pretreated by ultrasound and [BMIM][PF6] increased by 12.53% as compared to control (P < 0.05). More peptides with low molecular weight were obtained, providing support for the changes in DH. The trichloroacetic acid-nitrogen soluble index presented an increase, suggesting a better protein hydrolysate property. The increase in the calcium-binding activity showed the ultrasound-assisted ILs pretreatment could potentially improve bone health. The foaming capacity and stability of SPI hydrolysates pretreated by ultrasound-assisted [BMIM][PF6] always increased remarkably as compared to ultrasound-assisted [BDMIM][Cl] pretreatment. However, the synergistic effect of ultrasound-assisted [BMIM][PF6] on the emulsifying activity and antioxidant activities (DPPH and hydroxyl radical scavenging activity) was not as ideal as ultrasound-assisted [BDMIM][Cl] pretreatment, which may be affected by the structure of peptide. In conclusion, these results indicated the combination of dual-frequency ultrasound and ionic liquids would be a promising method to improve the functional properties of SPI hydrolysates and broaden the application scope of compound modification in proteolysis industry.  相似文献   

8.
We report the synthesis of a new series of imidazolium-based halogen-free ionic liquids 1-alkyl-3-methylimidazolium lauryl sulfates. By reacting 1-methylimidazole (MIM) with butyl, hexyl, octyl, and decyl bromides and exchanging bromide ion with lauryl sulfate anion, a series of ionic liquids [RMIM][C12H25OSO3] were produced. The high purity of these ionic liquids was verified with 1H-NMR, 13C-NMR, FT-IR and mass spectrometry (MS), demonstrating the effectiveness of this synthetic approach. Solubility test of these ionic liquids showed that they are soluble in most organic solvents except nonpolar solvents such as hexane and cyclohexane. The optical properties of [BMIM]Br and [BMIM][C12H25OSO3], where B refers to butyl, were examined. Both ionic liquids absorbed light in the UV region, yet essentially no absorption was recorded beyond 450 nm. Furthermore, both ionic liquids showed excitation wavelength-dependent fluorescence behavior. As an example, with an excitation wavelength of 360 nm, [BMIM][C12H25OSO3] showed an emission band maximum at 447 nm. Increasing the excitation wavelength to 440 nm, the emission band maximum was shifted to ∼500 nm.  相似文献   

9.
The surface composition of 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM] [PF6]) and 1-butyl-3-methylimidazolium dicyanamide ([BMIM] [DCA]) are studied by high-resolution Rutherford backscattering spectroscopy. Although [BMIM] [PF6] is almost stoichiometric up to the topmost molecular layer, considerable deviation from the theoretical stoichiometry is observed for [BMIM] [DCA] in a surface layer of ~1.5 nm thickness. Nitrogen is almost completely depleted in this layer while carbon is enhanced. In addition, there are oxygen impurities of ~3 × 1014 atoms/cm2 in this surface layer. With the help of X-ray photoelectron spectroscopy measurements it is concluded that the surface of [BMIM] [DCA] is covered by ~1.7 × 1014 molecules/cm2 of esters and/or carboxylic acids. These contaminant molecules have a preferred orientation, i.e. the carbonyl groups are on the surface of [BMIM] [DCA] and the alkyl chains are pointing towards vacuum. The origin of the contamination layer could be the surface segregation of bulk impurities.  相似文献   

10.
The binary composite ionic liquid mixtures composed of 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]) and 1-butyl-3-methylimidazolium acetate ([bmim][Ac]) were studied and used in electroreduction of nitrobenzene for the first time. 1H NMR and Fourier transform infrared (FTIR) spectroscopy were carried out to acquire a deep understanding of the interaction of binary ionic liquids, and UV/Vis spectroscopy was used to study the interaction between the mixture of ionic liquids and nitrobenzene. It was found that chemical shifts of all protons were changed and significant changes in the anion IR bands were induced, and the UV maximum absorption wavelength and absorbance of nitrobenzene in binary ionic liquids were different from those in the neat ionic liquid. The electrochemical reduction behavior of nitrobenzene in binary composite ionic liquids on platinum electrode was studied by cyclic voltammetry, in situ Fourier transform infrared spectroscopy, and constant potential electrolysis. Results indicated that the reduction of nitrobenzene in binary composite ionic liquids demonstrated higher current densities with a more positive potential, and the product (azobenzene) showed higher yield and selectivity in the composite ionic liquids than in the neat ionic liquids; the concentrations of water in the binary mixtures of ionic liquids had great effect on the electrochemical behavior of nitrobenzene. In the end, the mechanism of reduction of nitrobenzene in binary mixtures of ionic liquids was discussed.  相似文献   

11.
Ultrasound (US) effect on 1-butyl-3-methyl-imidazolium (BMI) ionic liquids having different counter anions, BF4, PF6 and Cl in aqueous medium was studied by FT-IR spectroscopy. Their deconvolution spectra were used to analyze the change of hydrogen bond in the absence and presence of US exposure to the ionic liquid. The FT-IR spectra were measured in different water contents without and with US at 23 kHz. These results indicated that the counter anion species in the imidazole based the ionic liquids played an important role for water solvation, when the US was exposed. The US hardly changed hydrogen bonding in the aqueous BMI–PF6, while the BMI–BF4 and BMI–Cl showed obvious change in their FT-IR spectra. Especially for the BMI–Cl, significant change was observed by the US exposure in the range of 2.6 wt% to 20 wt% of water contents. The results showed that the US could break the hydrogen bond in the BMI–Cl ionic liquids. In the case of BMI–BF4, the FT-IR band at 950–1152 cm−1 was significantly intensified under US exposure, due to that the US influenced BF4-water interaction. But, it was observed that the ionic liquid having PF6 was very less changed in the US system.  相似文献   

12.
Zinc sulfide (ZnS) quantum dots (QDs) were synthesized using the microwave assisted ionic liquid (MAIL) route. Three ionic liquids (ILs), namely, 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4]), trihexyl(tetradecyl) phosphonium bis(trifluoromethanesulfonyl) amide ([P6,6,6,14][TSFA]) and trihexyl(tetradecyl) phosphonium chloride ([P6,6,6,14][Cl]) were used in this study. The size and structure of the QDs were characterized by high-resolution transmission electron microscopy (HR-TEM) and selected area electron diffraction (SAED) pattern, respectively. The synthesized QDs were of wurtzite crystalline structure with size less than 5 nm. The QDs were more uniformly distributed while using the phosponium based ILs as a reaction medium during synthesis. The optical properties were investigated by UV–vis absorption and photoluminescence (PL) emission spectroscopy. The optical properties of QDs showed the quantum confinement effect in their absorption and the effect of cation and anion structural moiety was observed on their bandedge emission. The QDs emission intensity was measured higher for [P6,6,6,14][Cl] due to their better dispersion as well as high charge density of Cl anion. The capability of the ILs in stabilizing the QDs was interpreted by density functional theory (DFT) computations. The obtained results are in good agreement with the theoretical prediction.  相似文献   

13.
Wang X  Li Y  Du X  Lin Z  Huang C 《Journal of fluorescence》2011,21(4):1643-1648
Previous reports have seldom concerned about the RTILs (Room temperature ionic liquids), and their effects on derivatization reaction or derivatives. In this study, we reported that the effects of four different RTILs, i.e., [EMIM]PF6, [BMIM]PF6, [HMIM]PF6 and [OMIM]PF6, on fluorescence spectra of 17 β-estradiol (E2), and its derivatization solvent dansyl chloride (DNSCl) and the derivative. [BMIM]PF6 had a significant quenching effect on the fluorescence intensity of E2, suggesting the formation of [BMIM]PF6/E2 complexes and possible buried E2 molecular in a more hydrophobic microenvironment. The estimated Stern-Volmer quenching constant (Ksv = 0.3519) proved that E2 quenching caused by [BMIM]PF6 was a dynamic quenching process. Four RTILs, with different alkyl chain-length in imidazolium cation, resulted in different quenching intensities to E2 as follows: [EMIM]PF6 > [BMIM]PF6 > [HMIM]PF6 > [OMIM]PF6. At 5 mg L−1 of DNSCl, [BMIM]PF6, [HMIM]PF6 and [OMIM]PF6 increased the fluorescence intensities of E2 in water by 8.5, 7.6 and 6.1 times, respectively, and a 37-nm hypsochromic shift occurred. The fluorescence intensity for [BMIM]PF6-extracted derivative of E2 increased more than two times compared with that for the control. In conclusion, this study demonstrated that above four hexafluorophosphate salt ionic liquids could be used in derivatization reaction to enhance fluorescent sensitivity in E2 trace residual analysis.  相似文献   

14.
《Ultrasonics sonochemistry》2014,21(5):1682-1687
A comparative study of the immobilized Candida antarctica lipase B (Novozym 435)-catalyzed acylation of cordycepin with vinyl acetate in ionic liquids (ILs) under ultrasonic irradiation and shaking was conducted. The application of ultrasonic irradiation instead of shaking during acylation resulted in an enhanced reaction rate and a higher level of substrate conversion. Among the various ILs examined, 1-butyl-3-methylimidazolium tetrafluorobrate ([C4MIm][BF4]) was the best medium for the reaction because it produced the highest substrate conversion. In [C4MIm][BF4], the optimal ultrasonic power, water activity, and reaction temperature were 120 W, 0.33, and 50 °C, respectively. The acylation of cordycepin in [C4MIm][BF4] proved to be regioselective under both conditions: the C5′-OH was acylated. Novozym 435 exhibited a much higher operational stability in [C4MIm][BF4], and 58.0% of its original activity was maintained after ten reuse cycles under ultrasonic irradiation. Compared with the cordycepin, the rate of adenosine deaminase-catalyzed deamination was greatly reduced when the 5′-OH was substituted by acetyl group. These results demonstrated that the combined application of ultrasonic irradiation and IL as a medium was an efficient approach for the enzymatic modification of cordycepin.  相似文献   

15.
Selected physical properties of the ionic liquids might be quantitatively predicted based on the volumes of the ions these systems are composed of. It is demonstrated that the ionic volumes calculated using relatively simple theoretical quantum chemistry methods can be utilised to estimate the viscosities and electrical conductivities of various commonly used ionic liquids. The fitting formulas of the exponential form are offered and their predictive usefulness is verified. The quality of such predictions is discussed on the basis of several ionic liquids involving [Tf2N]? and [BF4]? anions and 16 various cations. The dependence of the viscosity and electrical conductivity of the ionic liquids on the temperature is also investigated and the temperature-dependent equations are derived and compared to the experimentally measured values.  相似文献   

16.
Five of the best known regularities have been investigated for different classes of ionic liquids. The regularities are near linearity of the isothermal bulk modulus as function of pressure, common intersection point of isotherms of the bulk modulus as a function of density, common intersection point of isotherms of isobaric expansion coefficient or isothermal compressibility versus pressure, and common intersection point for the isobars of internal pressure as a function of temperature. These regularities were evaluated by Tait and GMA equation of states.  相似文献   

17.
Excess molar volumes of the ternary systems formed by {n-butylacetate + 1-butanol + 1,2-butanediol } and {n-butylacetate + 1-butanol + 1,3-butanediol} were measured at 303.15 K for the whole composition range. The excess molar volumes, VmE, for binary mixtures of {n-butylacetate + 1-butanol, + 1,2-butanediol and + 1,3-butanediol} are positive and for the binary mixtures of {1-butanol + 1,2-butanediol and + 1,3-butanediol} are negative. Several empirical expressions are used to predict and correlate the ternary excess molar volumes from experimental results on the constituted binaries and analyzed to gain insight about liquid mixture interactions.  相似文献   

18.
As a probe of local structure, the vibrational properties of the 1‐butyl‐3‐methylimidazolium tetrafluoroborate [bmim][BF4] ionic liquid were studied by infrared (IR), Raman spectroscopy, and ab initio calculations. The coexistence of at least four [bmim]+ conformers (GG, GA, TA, and AA) at room temperature was established through unique spectral responses. The Raman modes characteristic of the two most stable [bmim]+ conformers, GA and AA, according to the ab initio calculations, increase in intensity with decreasing temperature. To assess the total spectral behavior of the ionic liquid both the contributions of different [bmim]+ conformers and the [bmim]+− [BF4] interactions to the vibrational spectra are discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
Densities ρ, dynamic viscosities η, of the ternary mixture (diethylcarbonate + p-chloroacetophenone + 1-hexanol) and the involved binary mixtures (diethylcarbonate + p-chloroacetophenone), (diethylcarbonate + 1-hexanol), and (p-chloroacetophenone + 1-hexanol) have been measured over the whole composition range at 303.15 K for the liquid region and at ambient pressure. The data obtained are used to calculate excess molar volumes VmE, excess partial molar volumes V¯m,iE, limiting excess partial molar volumes V¯m,iE,∞, and viscosity deviations Δη, of the binary and ternary mixtures. The data of excess molar volumes of the binary systems were fitted to the Redlich–Kister equation while for the ternary system the Cibulka equation was used. The McAllister's four body, and Kalidas and Laddha interaction models are used to correlate the kinematic viscosities of binary and ternary mixtures, respectively, to determine the fitting parameters and the standard deviations. The experimental data of the constitute binaries and ternary are analyzed to discuss the nature and strength of intermolecular interactions in these mixtures.  相似文献   

20.
We have investigated temperature‐induced Raman spectral changes of deuterated water in an ionic liquid, 1‐butyl‐3‐methylimidazolium tetrafluoroborate ([bmim][BF4]), between room temperature and 77 K. The comparison of the OH and OD stretching vibrational spectra at 77 K shows that the strength of the hydrogen bonds in [bmim][BF4]–water mixtures strongly depends on the type of water, i.e. H2O and D2O. In the [bmim][BF4]–D2O system, remarkably strong hydrogen bonds form at low temperatures, but they switch to nearly free hydrogen bonds on heating. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号