首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In order to improve the particle collection efficiency of the electrostatic precipitator (ESP), a transverse plate ESP with bipolar discharge electrodes is proposed. The simulations of the velocity distribution have shown that when the inlet velocity is 1 m/s, within the range of 40 mm from electrode plate, the average velocities of windward side and leeward side are less than 0.7 m/s and 0.3 m/s respectively. It is clear that the velocity near the collection electrode plate of this bipolar ESP is much lower than that of the ordinary ESP at the same inlet velocity. This low velocity can lead to higher efficiency for fine dust collection due to the less dust re-entrainment in ESP. It is also found that the average velocities are getting lower when the distance between plates electrodes are greater than 150 mm in accordance with the simulations. The voltage current characteristics of the bipolar ESP are superior to the ordinary ESP. The pressure drop of the bipolar ESP is about 30% higher than that of the ordinary one. The dust penetration of the bipolar ESP is about 54% less than that of the ordinary ESP when the sintering dust with 25.405 μm mass median diameter is used as the test particulate under the condition of the electric field from 2.1 kV/cm to 3.2 kV/cm and the velocity from 1.0 m/s to 1.5 m/s.  相似文献   

2.
The electrostatic precipitator (ESP) has been extensively used for collecting aerosol particles emitted from coal combustion, but its collection efficiency of PM2.5 (Particulate matter whose aerodynamic diameter is less than 2.5 μm) is relatively low due to insufficient particle charging. The positive pulsed ESP is considered to enhance particle charging and improve collection efficiency. A laboratory-scale pulsed ESP with wire-plate electrode configuration was established to investigate the particle charging and penetration efficiency under controlled operating conditions of different applied impulse peak voltages, impulse frequencies, dust loadings and residence times. The results show that most particles larger than 0.2 μm are negatively charged, while most particles smaller than 0.2 μm are positively charged. For a given operating condition, the particle penetration efficiency curve has the highest penetration efficiency for particles with a diameter near 0.2 μm, and there is always a negative correlation between the particle penetration efficiency and the average number of charges per particle. Under the same operating conditions, the particle penetration efficiency decreases with increasing impulse peak voltage and impulse frequency, but increases as the dust loading increases. The results imply that residence time of 4 s is optimum for particle charging and collection. PM2.5 number reduction exceeding 90% was achieved in our pulsed ESP.  相似文献   

3.
Non-thermal Plasma agglomeration is presented as a promising process to reduce the number concentration of sub-micron particles in an acrylic duct, which included a saw-tooth electrode and a wire-plate electrostatic precipitator (ESP). The generated plasma by pulse-energized ESP, the particle agglomerations were controlled under operating conditions such as pulse voltages, pulse frequencies, dust loadings, and gas velocities. When gas velocity increased from 0.5 to 1 m s−1 at 45 kVp, 20 kHz, it was found that efficiency was increased. At gas velocity of 1 m s−1, the sub-micron particle number reduction efficiency for all particle sizes was over 90% in ESP.  相似文献   

4.
Recently, narrow electrostatic precipitators (ESPs) have become a subject of interest because of their possible application for the cleaning of the exhaust gases emitted by diesel engines. Diesel engines emit fine particles, which are harmful to human and animal health. There are several methods for decrease particulate emission from a diesel engines, but up to now, these methods are not enough effective or very expensive. Therefore, an electrostatic precipitation was proposed as an alternative method for control of a diesel particulate emission.In this work, results of electrohydrodynamic (EHD) secondary flow and particle collection efficiency measurements in a narrow wire-cylinder type ESP are presented. The ESP was a glass cylinder (300 mm × 29 mm) equipped with a wire discharge electrode and two collecting cylinder-electrodes. A 0.23 mm in diameter and 100 mm long stainless-steel discharge wire electrode was mounted in the center of the cylinder, parallel to the main flow direction. The collecting electrodes were made of stainless steel cylinders, each with a length of 100 mm and inner diameter of 25.5 mm. An air flow seeded with a cigarette smoke was blown along the ESP duct with an average velocity of 0.9 m/s.The EHD secondary flow was measured using 2-dimensional particle image velocimetry (PIV) method. The PIV measurements were carried out in the wire electrode mid-plane, perpendicularly to the wire and the collecting electrodes. The results show similarities and differences of the particle flow in the wire-cylinder type ESP for a negative and a positive DC voltage polarity.The collection efficiency was calculated from the fractional particle concentration. The fractional particle concentration was measured using the optical aerosol spectrometer. The results of the fractional collection efficiency confirmed the common view that the collection efficiency of fine particles in the ESP increases with increasing voltage and it is higher for negative voltage polarity and decreases when decreasing particle diameter.  相似文献   

5.
进口浓度对水力旋流器颗粒分级的影响   总被引:2,自引:0,他引:2  
通过对水力旋流器内液固多相流动的固体颗粒运动进行理论分析、数值模拟和实验测试,探讨了进口颗粒浓度对采用水力旋流器进行高炉污泥颗粒分级的影响。液固多相流动的数值模拟证实,固体颗粒在水力旋流器内的径向沉降速度近似与颗粒粒径的平方成正比。实验给出了不同进口浓度的颗粒分级效率曲线。本文的实验结果、数值模拟结果以及颗粒离心沉降的理论分析都表明,进口浓度对水力旋流器内高炉污泥的颗粒分级影响不大,该结果诠释了在高炉污泥脱锌操作所考虑的颗粒浓度范围内为什么低浓度下水力旋流器颗粒分级的数值模拟结果与较高浓度下的实验结果基本一致。  相似文献   

6.
水力旋流器参数对高炉污泥分离的影响   总被引:1,自引:0,他引:1  
本文采用简化的多流体多相流模型及雷诺应力湍流模型建立了水力旋流器内液固多相湍流流动的数学模型,对水力旋流器在不同结构参数和进口压力下的高炉污泥分离进行了数值模拟,获得了水力旋流器内高炉污泥不同情况下的颗粒分级效率曲线。数值结果表明,在高炉污泥颗粒分离的应用范围内,锥角增大,旋流器直径增大,分离粒径会增加, 进口压力增加,分离粒径降低。  相似文献   

7.
Results of 2- and 3-dimensional Particle Image Velocimetry (PIV) measurements of the flow velocity fields in narrow electrostatic precipitators (ESPs) with either a longitudinal or transverse wire electrode are presented in this work. The obtained results confirmed that the particle flow in the ESP have a strongly 3D character mainly due to applied voltage and narrow cross section of the ESP duct. It was found that several vortices were formed along and across the ESP duct. The complex character of the flow in both ESP may considerably affect the particle collection efficiency of the ESP. This issue is under investigation.  相似文献   

8.
In this work, the results of electrohydrodynamic (EHD) secondary flow and particle collection efficiency measurements in a spike-plate type electrostatic precipitator (ESP) are presented. The EHD secondary flow was measured using 2- and 3-dimensional particle image velocimetry (PIV) method under the negative DC voltage. The PIV measurements were carried out in several cross-sectional planes along and across the ESP duct. The results show a complex and turbulent flow structure in the ESP. The EHD secondary flow significantly depends on applied voltage and measuring cross-sectional plane position in respect to the spike tip. The partial collection efficiency of the ESP was measured for negative and positive DC voltage. The particle concentration with and without discharge was measured at the ESP exit using an optical aerosol spectrometer.  相似文献   

9.
旋流煤粉燃烧器加进口堵塞和煤粉浓缩器可以影响湍流,燃烧温度以及煤粉浓度的分布,从而影响NO的生成与排放。本文用三维相位多普勒颗粒测速仪(PDPA)测量和双流体模型数值模拟研究了堵塞和煤粉浓缩器对旋流煤粉燃烧器内两相流动的影响。实验结果和数值模拟结果基本符合。实验和模拟结果都表明,无论是进口堵塞还是煤粉浓缩器都会增加旋流燃烧器的进口湍流度,同时增加进口轴线附近的颗粒浓度,后者将有利于降低NO排放。  相似文献   

10.
Using electrostatic precipitators (ESPs) in filtration systems results in higher system energy efficiency than fiber-based filters, but particle re-entrainment could lower the collection efficiency of ESPs. This paper demonstrates a novel ESP that utilizes foam-covered collecting electrodes to reduce particle re-entrainment and enhance collection efficiency. Particles that settle down within the pores of the foam are less likely to re-enter the airflow. Results show that foam-covered ESPs have 99 percent collection efficiency. Parametric plots demonstrate the effects of the key design variables, such as corona voltage, repelling voltage, and free airflow velocity on collection efficiency.  相似文献   

11.
根据某1 t/h燃煤工业锅炉空气预热器的热力参数,设计并搭建了一套颗粒帘空气预热器模拟实验系统,研究了不同进气温度Tg0(150~300℃)、进气速度Vg0(0.9~1.5m/s)、颗粒帘进口厚度b0 (60~180 mm)、颗粒粒径dp(150~212μm)以及不同颗粒质量流量ms (550~2150 g/s)工况条件下热空气与进口温度tp0=20℃的硅砂颗粒帘间的换热特性。结果表明:影响颗粒帘换热器中气粒两相换热特性因素的重要性次序为进气温度、进气速度、颗粒质量流量、颗粒粒径、颗粒帘进口厚度;换热端差最低可至4.5℃,最大可达87℃;颗粒帘及颗粒帘出口气流的温度沿颗粒下落方向在前期上升迅速(186~475℃/m)而后期上升比较缓慢(60~108℃/m),并且在0~0.5 m和0.5~1.0 m的高度范围可分别用线性和对数方程来描述。  相似文献   

12.
The novel electrohydrodynamically-assisted electrostatic precipitator (EHD ESP) was developed to suppress particle reentrainment for collection of low resistive diesel particulates. The collection efficiency was compared between vertically and horizontally oriented electrodes of the EHD ESP using 400 cc diesel engine. The particle size dependent collection efficiency was evaluated for the particle size ranging in 20 to 5000 nm using a scanning mobility particle sizer (SMPS) and a particle counter (PC). Both horizontally and vertically oriented EHD ESP showed an excellent suppression of particle reentrainment. However, the horizontally oriented electrode EHD ESP showed significantly improved for the particle size of 300–500 nm in comparison with vertically oriented electrode EHD ESP, resulting in more than 90% collection efficiency for all particle size range. The EHD ESP has high potential especially for highly concentrated marine diesel engine emission control.  相似文献   

13.
The paper reports on the particle. sampling efficiency of the inlet system for the Aerodynamic Particle Sizer (TSI, Inc., St. Paul MN). Large particles are depleted from the sampled aerosol by two mechanisms: super-isokinetic sampling at the entrance of the inlet, and inertial impaction on the inner nozzle. A fluorometric technique was used to separately characterize these mechanisms. Numerical studies were also performed. The experimental results show that the inlet's overall efficiency drops from around 90% for 3 μm particles to less than 45% for particles larger than 10 gm. Several high efficiency inlets were developed and tested. These inlets provide higher sampling efficiencies, but reduce the instrument's sizing resolution. Measurements of 7.3 μm oleic acid particles with a high efficiency inlet showed a 5% spread in measured diameter at 50% count, while less than a 1076 spread was observed using the standard inlet. It was also found that the super-isokinetic condition reduces particle losses on the inner nozzle. The standard inlet is recommended for verifying test aerosol monodispersity. An alternative to the standard inlet is suggested for measurement of size distributions.  相似文献   

14.
The aim of the present parametric study is to enhance the performances of a wire-to-square tube electrostatic precipitator (ESP) for the collection of submicrometer particles using dielectric barrier discharge (DBD). The input parameters under study are: the high voltage waveform, the wire electrode diameter, the collection electrode dimensions (width, discretization and number of collection sides) and the tube cross-section. The electrical measurements show that the discharge mode of the ESP is rather homogeneous. The particle collection efficiency as determined from aerosol spectroscopy measurements is higher at high applied voltage and within a certain frequency range. The parametric study of the ESP points out that using thicker wire electrodes as well as collection electrodes with different number of sides does not deteriorate the ESP performance. However, the penetration decreases with larger or discretized collection electrodes and larger tube cross-sections.  相似文献   

15.
本文实验对比研究了0.3 mm、0.5mm、0.7 mm三种粒径的铜颗粒烧结与堆积床多孔介质中的流动沸腾换热,主要研究了入口流速、热流密度、加热方位及粒径对流动沸腾换热的影响,以及多孔介质中的沸腾滞后。实验结果表明:大入口流速、低热流密度、下方加热以及小粒径时加热壁面的过热度较低,即有利于沸腾换热;本实验所用烧结多孔介质壁面过热度高于堆积床多孔介质,其原因是内部含有闭孔。  相似文献   

16.
为了研究尘埃等离子体中带电尘埃的粒子半径、粒子浓度和带电荷数对量子通信性能的影响,首先根据Mie散射理论得到单个带电尘埃粒子的光散射截面;然后通过粒子浓度求出总的消光截面,得出链路衰减的数学模型,提出了带电粒子特性与量子纠缠度的关系;针对退极化信道,当单个尘埃粒子所吸附带电粒子的个数为50时,给出了尘埃粒子半径、粒子浓度与信道容量和量子误码率的定量关系.仿真结果表明,当量子信号的传输距离为10km时,尘埃粒子浓度从1×10~(10) m~(-3)增加到10×10~(10) m~(-3),信道容量从0.6726降低到0.1075;尘埃粒子半径从0.1μm增加到10μm时,量子误码率由1.334×10~(-3)增加到5.309×10~(-3).由此可见,尘埃等离子体中带电尘埃粒子的半径和浓度对量子卫星通信性能有显著的影响.因此,为确保量子通信的可靠性,应根据所探测到的等离子体环境的状况,调整卫星通信系统的各项指标参数.  相似文献   

17.
《Journal of Electrostatics》2006,64(7-9):498-505
In this work, results of two- and three-dimensional particle image velocimetry (PIV) measurements of the flow velocity fields in a wide spacing spike–plate electrostatic precipitator (ESP) under positive polarity are presented. A DC voltage of positive polarity (up to 28 kV) was applied to the spike electrode. The average gas flow velocity was 0.6 m/s. The PIV measurements were carried out in four planes perpendicular to the plate electrodes. Three parallel planes passed along the ESP while one plane passed across the ESP duct. The results show that electrohydrodynamic (EHD) secondary flow with relatively strong vortices exist in the ESP. The EHD secondary flow pattern depends on applied voltage and measuring plane position in respect to the spike tip. The strongest vortices occur in the plane passing through the tip of the upstream-directed spike. These relatively strong EHD vortices may hinder collection of the particles in the diameter range of 0.1–1 μm in the wide electrode spacing spike–plate ESPs.  相似文献   

18.
Although improving electrostatic precipitator (ESP) collection of fine particles (micron and submicron sizes) remains of interest, it is not yet clear whether the turbulent flow patterns caused by the presence of electric field and charge in ESPs advance or deteriorate fine particle precipitation process. In this paper, results of the laser flow visualization and Particle Image Velocimetry (PIV) measurements of the particle flow velocity fields in a wire-to-plate type ESP model with seven wire electrodes are presented. Both experiments were carried out for negative and positive polarity of the wire electrodes. The laser flow visualization and PIV measurements clearly confirmed formation of the secondary flow (velocity of several tens of cm/s) in the ESP model, which interacts with the primary flow. The particle flow pattern changes caused by the strong interaction between the primary and secondary flows are more pronounced for higher operating voltages (higher electrohydrodynamic numbernehd) and lower primary flow velocities (lower Reynolds number Re). The particle flow patterns for the positive voltage polarity of the wire electrodes are more stable and regular than those for the negative voltage polarity due to the nonuniformity of the negative corona along the wire electrodes (tufts).  相似文献   

19.
This study presents the results of investigations of a hybrid electrostatic filtration system (HEFS), which combines an electrostatic precipitator (ESP) and a fibrous filter installed downstream of the ESP. The particles escaping from the ESP carry large amount of charge and this can increase the filtration efficiency of the fibrous filter. The filtration characteristics, including the efficiency, pressure drop and ozone generation, were investigated experimentally. The influence of system parameters, including the filter type, applied voltage, and distance between the ESP and fibrous filter on the overall efficiency were also studied. The measured results show that utilizing the non-high-efficient fibrous filter to remove the charged particle could provide a much higher efficiency without adding the pressure drop due to the electrostatic force. If the efficiency was similar, the ozone generated by HEFS was much lower than that of the single ESP. The results proved that filter efficiency increased with a higher applied voltage and higher initial mechanical filtration efficiency. The distance between the filter and ESP had no influence on the system filtration efficiency. The efficiency of filter in HEFS supplied with the positive voltage was slightly lower than for the negative voltage. In addition, the mathematical model was utilized to model the air filter efficiency in HEFS. The modeled and measured results agreed reasonably. Overall conclusion is that the HEFS could operate at a high efficiency with the lower applied voltage, ozone generation and pressure drop.  相似文献   

20.
为实现高湿环境下脱硫塔内复杂烟气的高效除尘,设计了一种预混式双流体静电雾化喷嘴,并对其喷雾特性及荷电性能进行了试验研究。试验测量了喷雾粒径、锥角和荷质比等参数,通过量纲分析,得到了该喷嘴粒径分布与雷诺数Re的数学模型。试验结果表明:喷雾粒径随气液比(GLR)的增加呈指数减小,当气液比小于0.1时,喷雾粒径随气液比增加迅速减小,当气液比大于0.1时,喷雾粒径减小幅度趋于平缓;喷雾粒径随雷诺数的增加呈线性减小。喷雾锥角随着气液比增加呈先增大后减小的趋势,当气液比为0.1时喷雾锥角最大。气液比增加,喷雾荷质比增加,荷电效果逐渐增强。荷电电压的升高使得喷雾的单分散性提高,弥散空间逐渐增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号