首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
 结合负载限制型磁绝缘线振荡器(MILO)和渐变型MILO的特点,提出了一种新型双阶梯阴极型MILO。该器件前2个叶片为扼流片,中间3个叶片为主作用叶片,后面1个为提取叶片,在电流发射区与慢波结构径向相对的阴极部分分为3段,形成双阶梯阴极结构。根据Maxwell方程和Floquet定理导出其色散方程,并对其振荡主频作了理论分析。2.5维粒子模拟表明,器件工作频率为1.21 GHz,与理论预测相符,双阶梯的引入,对器件阻抗和振荡频率影响较小。在工作电压458 kV、电流40.5 kA条件下,双阶梯阴极结构将MILO输出功率从2.20 GW提高到2.88 GW,功率转换效率从12.0%提高到15.5%。  相似文献   

2.
 在对磁绝缘线振荡器(MILO)慢波结构色散特性进行理论分析的基础上,结合负载限制型和渐变型MILO的特点,对X波段MILO慢波结构、阴极和中心阳极进行了设计。利用2.5维全电磁PIC程序进行粒子模拟,研究了输出功率与结构参数之间的关系,进一步优化MILO结构。在外加电压为510 kV,束流43 kA情况下,模拟得到平均功率2.83 GW的微波输出,中心频率为8.2 GHz,功率转换效率12.9%。  相似文献   

3.
 对阶梯阴极型L波段磁绝缘线振荡器(MILO)进行了实验研究。介绍了测试方法与测试系统;开展了阴极电子发射实验,发现阴极电子发射不均匀是对称结构MILO产生非对称微波模式的最关键的因素之一;并对二极管屏蔽环尺寸、扼流片半径、提取间隙等进行了研究。在电子束电压约420 kV、电流33 kA的条件下,得到了阶梯阴极型L波段MILO的高功率微波辐射功率为1.22~1.47 GW,脉宽大于20 ns,频率为1.21 GHz,束波转换效率约为10%,器件产生微波模式为TM01模,经过模式转换器后的辐射模式为TE11模。  相似文献   

4.
利用数值方法计算了磁绝缘线振荡器(MILO)主慢波结构谐振腔和扼流腔的谐振频率和场分布,得出慢波结构谐振腔谐振频率的一些变化规律:随着叶片内半径的增大、叶片外半径的减小、叶片周期的减小以及叶片间距的减小,谐振腔TM01模式截止频率升高;而阴极半径的变化对截止频率几乎无影响。当主慢波结构腔内半径为4.6cm,扼流腔内半径为4.2cm,阴极半径为3cm时,MILO工作在3.“4.4GHz频率范围,扼流片可以阻止微波功率向脉冲功率源泄漏,这有利于提高器件微波输出的效率;  相似文献   

5.
L波段硬管磁绝缘线振荡器的研制   总被引:1,自引:12,他引:1       下载免费PDF全文
 对L波段磁绝缘线振荡器(MILO)的二极管进行了研究,优化了器件的设计,以及辐射天线一体化的设计,研制出了L波段硬管 MILO。硬管MILO的实验结果是:在电压为450 kV、电流为35 kA的条件下,L波段硬管 MILO的输出微波频率为1.22 GHz,功率大于1.5 GW,微波脉宽半高宽约20 ns,功率效率约10%;硬管MILO的保真空时间超过了5 h。  相似文献   

6.
高效率磁绝缘线振荡器的设计和数值模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
 运用2维全电磁粒子模拟程序,综合硬管磁绝缘线振荡器和渐变型磁绝缘线振荡器的优点,设计了具有较易起振和较高效率L波段磁绝缘线振荡器。在普通L波段MILO的基础上,主要进行了两个方面的改进,一是将磁绝缘二极管设计为轴向,即绝缘磁场主要由阴极端面发射的电流提供,二极管间隙为2.2 cm;二是增加慢波结构叶片数目,加入渐变叶片结构,形成渐变MILO模型,叶片总数为13。并针对矩形和具有慢上升前沿的脉冲电压波形分别进行了输出腔、叶片等的优化。两种优化模型在输入电压500~600 kV时,在L波段都获得输出周期平均功率超过5 GW、效率大于20%的微波输出。并对实验中可能产生的射频击穿的问题,提出采用对扼流片尖端进行倒角处理以降低场强。模拟表明,该方法对输出功率和效率影响不大,但有效减小了击穿压力。  相似文献   

7.
指出了磁绝缘线振荡器(MILO)微波提取结构传统设计方法中可能存在的问题。通过高频电磁软件模拟得到当微波提取结构具有不同特征阻抗时TEM模式功率传输效率在MILO工作频点附近的频率响应规律。模拟结果表明,当MILO阻抗较高时,用传统方式设计的微波提取结构不能满足TEM模式传输的要求。为了解决高阻抗情况下TEM模式的传输困难,提出并讨论了阶梯负载的设计方案。进一步模拟结果表明,阶梯负载克服了TEM模式的传输困难,提高了微波提取结构对MILO频率漂移的适应能力。  相似文献   

8.
针对当前高功率微波(HPM)中的热点器件磁绝缘线振荡器(MILO) 频率低、效率低等问题,提出了一种可以沿x方向平面展开的平面MILO。该器件也是一种低阻抗高功率微波器件,通过一个低外加磁场来代替常规MILO中的磁绝缘电流,辅助实现器件的磁绝缘,从而实现器件效率的提高。结合PIC模拟,建立一个外加低磁场的C波段平面MILO,并根据其慢波结构(平面折绉表面)特点给出相应的色散曲线,确定微波器件工作点,利用2.5维全电磁粒子模拟软件对其进行数值模拟,在输入为4.0 GW电功率(工作电压约800 kV)的条件下,模拟得到频率为6.56 GHz的微波输出,通过优化外加磁场,使得模拟微波输出功率达到1.22 GW,功率效率在C波段条件下超过30%。  相似文献   

9.
HEM11模磁绝缘线振荡器的高频分析   总被引:2,自引:0,他引:2       下载免费PDF全文
作为小型化和紧凑型的高功率微波源,磁绝缘线振荡器(MILO)在过去十几年里得到了广泛的研究和发展.在大多数研究中,最低的对称模一直被当作器件的主模.然而,由于结构的对称性或者电子发射均匀度不理想等原因,很容易激励起非对称模式.计算了MILO同轴结构中同时包含对称模和非对称模的本征方程.在此基础上,通过对结构的优化设计,提出了一种HEM..模工作的MILO,并开展了原理性实验.在二极管的电压为480 kV,电流为39kA条件下得到了功率为1.2 GW,脉冲宽度为加40 ns 的微波输出,功率转换效率约为6.5%,微波频率为1.98 GHz,模式为HEM11模.  相似文献   

10.
采用2.5维粒子模拟软件对改进型低阻类膜片加载同轴渡越时间振荡器进行了研究。研究结果表明:提取腔工作于类模场时,具有较高的束波互作用效率;引入渐变型输出波导,提高了提取腔内微波向外耦合输出的能力;通过加载感性支撑杆,一方面对金属膜片起支撑固定作用,另一方面可以及时将膜片上的感应电荷导流至接地外筒、从而降低间隙附近的空间电荷效应,以增加可提取的束动能。经优化设计,该结构在二极管电压为530 kV,二极管电流为12.9 kA、外加导引磁场为0.5 T的条件下,输出微波功率2.74 GW,微波频率7.76 GHz,束波功率转换效率达40%。  相似文献   

11.
 建立了磁绝缘线振荡器自磁绝缘的理论模型,给出了磁绝缘电流计算公式。然后给出了非线性稳态的最大轮辐电流计算公式,并据此分析了负载限制型磁绝缘线振荡器的最大效率。提出一种新型的端面发射型磁绝缘线振荡器,在二极管电压590 kV,二极管电流为55.47 kA情况下,粒子模拟得到周期平均功率6.1 GW左右,工作主频为1.24 GHz,束波转换效率18.64%左右。端面发射型磁绝缘线振荡器的效率比负载限制型磁绝缘线振荡器的最大效率提高6%左右。端面发射的电流不参与束波互作用,由于端面发射的电流比较小,在总电流不变的情况下参与束波互作用的电流增多,从而提高了效率。最后分析了角向磁场的分布以及自磁绝缘的情况。  相似文献   

12.
A novel magnetically insulated transmission line oscillator(MILO) in which a modified HEM 11 mode is taken as its main interaction mode(HEM 11 mode MILO) is simulated and experimented in this paper.The excitation of the oscillation mode is made possible by carefully adjusting the arrangement of each resonant cavity in a two-dimensional slow wave structure.The special feature of such a device is that in the slow-wave-structure region,the interaction mode is HEM 11 mode which is a TM-like one that could interact with electron beams effectively;and in the coaxial output region,the microwave mode is TE 11 mode which has a favourable field density pattern to be directly radiated.Employing an electron beam of about 441 kV and 39.7 kA,the HEM 11 mode MILO generates a high power microwave output of about 1.47 GW at 1.45 GHz in particle-in-cell simulation.The power conversion efficiency is about 8.4 % and the generated microwave is in a TE 11-like circular polarization mode.In a preliminary experiment investigation,high power microwave is detected from the device with a frequency of 1.46 GHz,an output energy of 43 J-47 J,and a pulse duration of 44 ns-49 ns when the input voltage is 430 kV-450 kV,and the diode current is 37 kA-39 kA.  相似文献   

13.
 对波导的截止特性作了理论分析,并分析了利用该特性进行高功率微波功率测量的可行性及准确性。在远场条件下,利用该特性对工作频率为1.75 GHz的磁绝缘线振荡器进行了微波功率测量。测量结果表明:微波源辐射功率2.3 GW,辐射模式为TM01主模,实测辐射模式方向图与模拟计算结果一致,微波脉宽大于40 ns,未发现明显的功率击穿现象;使用波导截止特性测量微波功率是可行的,有利于防止接收喇叭的功率击穿,测量精度较高。  相似文献   

14.
A novel magnetically insulated transmission line oscillator (MILO) in which a modified HEM11 mode is taken as its main interaction mode (HEM11 mode MILO) is simulated and experimented in this paper. The excitation of the oscillation mode is made possible by carefully adjusting the arrangement of each resonant cavity in a two-dimensional slow wave structure. The special feature of such a device is that in the slow-wave-structure region, the interaction mode is HEM11 mode which is a TM-like one that could interact with electron beams effectively; and in the coaxial output region, the microwave mode is TE11 mode which has a favourable field density pattern to be directly radiated. Employing an electron beam of about 441 kV and 39.7 kA, HEM11 mode MILO generates a high power microwave output of about 1.47 GW at 1.45 GHz in particle-in-cell simulation. The power conversion efficiency is about 8.4 % and the generated microwave is in a TE11-like circular polarization mode. In a preliminary experiment investigation, high power microwave is detected from the device with a frequency of 1.46 GHz, an output energy of 43 J-47 J, and a pulse duration of 44 ns-49 ns when the input voltage is 430 kV-450 kV, and the diode current is 37 kA-39 kA.  相似文献   

15.
王冬  陈代兵  范植开  邓景康 《物理学报》2008,57(8):4875-4882
作为小型化和紧凑型的高功率微波源,磁绝缘线振荡器(MILO)在过去十几年里得到了广泛的研究和发展.在大多数研究中,最低的对称模一直被当作器件的主模.然而,由于结构的对称性或者电子发射均匀度不理想等原因,很容易激励起非对称模式.计算了MILO同轴结构中同时包含对称模和非对称模的本征方程.在此基础上,通过对结构的优化设计,提出了一种HEM11模工作的MILO,并开展了原理性实验.在二极管的电压为480kV,电流为39kA条件下得到了功率为1.2GW,脉冲宽度为40ns的微波输出,功率转换 关键词: 磁绝缘线振荡器 高频特性 11模')" href="#">HEM11模 开放腔  相似文献   

16.
An X-band magnetically insulated transmission line oscillator (MILO) is designed and investigated numerically and experimentally for the first time. The X-band MILO is optimized in detail with KARAT code. In simulation, the X-band MILO, driven by a 720 kV, 53 kA electron beam, comes to a nonlinear steady state in 4.0 ns. High-power microwaves (HPM) of TEM mode is generated with an average power of 4.1 GW, a frequency of 9.3 GHz, and power conversion efficiency of 10.870 in durations of 0-40 ns. The device is fabricated according to the simulation results. In experiments, when the voltage is 400 kV and the current is 50 kA, the radiated microwave power reaches about 110 MW and the dominating frequency is 9.7GHz. Because the surfaces of the cathode end and the beam dump are destroyed, the diode voltage cannot increase continuously. However, when the diode voltage is 400 kV, the average power output is obtained to be 700 MW in simulation. The impedance of the device is clearly smaller than the simulation prediction. Moreover, the duration of the microwave pulse is obviously shorter than that of the current pulse. The experimental results are greatly different from the simulation predictions. The preliminary analyses show that the generations of the anode plasma, the cathode flare and the anode flare are the essential cause for the remarkable deviation of the experimental results from the simulation predictions.  相似文献   

17.
紧凑型P波段相对论返波振荡器的粒子模拟   总被引:1,自引:1,他引:0       下载免费PDF全文
 设计了一种紧凑型P波段相对论返波振荡器,其电动力学结构是由同轴慢波结构和同轴引出结构组成的。同轴慢波结构缩小了器件的径向尺寸;同轴引出结构缩短了器件的轴向长度,且提高了束波作用效率。通过粒子模拟研究了器件内束波作用的物理过程,模拟结果表明:器件具有结构紧凑、束波作用效率高的特点。在二极管电压700 kV,电流7 kA,导引磁场1.5 T时,器件在频率833 MHz处获得较高的微波输出,饱和后输出微波的平均功率达1.58 GW,效率约为32%,器件电磁结构尺寸仅为108 mm×856 mm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号