首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 187 毫秒
1.
 对阶梯阴极型L波段磁绝缘线振荡器(MILO)进行了实验研究。介绍了测试方法与测试系统;开展了阴极电子发射实验,发现阴极电子发射不均匀是对称结构MILO产生非对称微波模式的最关键的因素之一;并对二极管屏蔽环尺寸、扼流片半径、提取间隙等进行了研究。在电子束电压约420 kV、电流33 kA的条件下,得到了阶梯阴极型L波段MILO的高功率微波辐射功率为1.22~1.47 GW,脉宽大于20 ns,频率为1.21 GHz,束波转换效率约为10%,器件产生微波模式为TM01模,经过模式转换器后的辐射模式为TE11模。  相似文献   

2.
虚阴极为负载的磁绝缘线振荡器设计和研究   总被引:2,自引:2,他引:0       下载免费PDF全文
 设计了S波段的MILO,工作频率为2.33 GHz,器件不容易产生模式竞争,适合于单模运行。进一步对MILO进行改造:阴极加入端面发射,使磁绝缘效果更好;收集极采用金属薄膜,利用磁绝缘电流形成虚阴极,充分发挥负载电流的磁绝缘作用,利用负载电流参与波束能量转换,使输出功率和效率进一步提高。通过优化设计的虚阴极MILO,在输入电压为450 kV,电流为45 kA时,最终得到2 GW的周期平均输出功率,效率高达10%。  相似文献   

3.
L波段双阶梯阴极磁绝缘线振荡器的粒子模拟与实验研究   总被引:1,自引:1,他引:0  
对L波段双阶梯阴极磁绝缘线振荡器(MILO)进行了粒子模拟,在输入电压710 kV,电流56.6kA条件下,得到微波输出功率为4.8 GW,微波频率1.22 GHz。根据模拟结果设计MILO实验装置并开展实验研究,介绍了测试方法与测试系统,并对辐射微波功率、频率和模式进行了测量。在二极管电压740 kV,电流61 kA条件下,测得辐射微波功率为3.57 GW,微波脉宽46 ns,微波频率1.23 GHz,功率转换效率8%,辐射微波模式为TM01模。  相似文献   

4.
 结合负载限制型磁绝缘线振荡器(MILO)和渐变型MILO的特点提出并设计了P波段混合型MILO的结构,主要以负载限制型MILO结构作为雏形,将其内部仅含有的1根提取叶片用3根长度渐变的慢波叶片组成的渐变段替换。该结构可更好地实现束波相互作用,并使提取间隙电场与MILO输出同轴结构处的电场达到更好的匹配,增加微波输出功率。器件纵向总长度为47 cm,外筒直径为44 cm。优化后的2.5维全电磁粒子模拟结果表明:在二极管工作电压550 keV、电流约57 kA的情况下,输出微波的中心频率为640 MHz,平均功率为4.27 GW,束波转换效率为13.6%,器件4 ns时起振,6 ns达到饱和,且微波输出功率十分稳定,最终输出微波模式为TEM模。  相似文献   

5.
 在对磁绝缘线振荡器(MILO)慢波结构色散特性进行理论分析的基础上,结合负载限制型和渐变型MILO的特点,对X波段MILO慢波结构、阴极和中心阳极进行了设计。利用2.5维全电磁PIC程序进行粒子模拟,研究了输出功率与结构参数之间的关系,进一步优化MILO结构。在外加电压为510 kV,束流43 kA情况下,模拟得到平均功率2.83 GW的微波输出,中心频率为8.2 GHz,功率转换效率12.9%。  相似文献   

6.
针对当前高功率微波(HPM)中的热点器件磁绝缘线振荡器(MILO) 频率低、效率低等问题,提出了一种可以沿x方向平面展开的平面MILO。该器件也是一种低阻抗高功率微波器件,通过一个低外加磁场来代替常规MILO中的磁绝缘电流,辅助实现器件的磁绝缘,从而实现器件效率的提高。结合PIC模拟,建立一个外加低磁场的C波段平面MILO,并根据其慢波结构(平面折绉表面)特点给出相应的色散曲线,确定微波器件工作点,利用2.5维全电磁粒子模拟软件对其进行数值模拟,在输入为4.0 GW电功率(工作电压约800 kV)的条件下,模拟得到频率为6.56 GHz的微波输出,通过优化外加磁场,使得模拟微波输出功率达到1.22 GW,功率效率在C波段条件下超过30%。  相似文献   

7.
新型准光腔同轴虚阴极振荡器的研究   总被引:2,自引:2,他引:0       下载免费PDF全文
 集合准光腔型虚阴极振荡器和同轴虚阴极振荡器的优点,设计了一种新型的准光腔同轴虚阴极振荡器。采用自由电磁振荡理论分析了3反射镜准光学谐振腔中的场分布,并用2.5维全电磁PIC程序对该器件进行了粒子模拟。在输入电压为600 kV,二极管电流为50 kA的条件下,得到主频为7.0 GHz,峰值功率超过6 GW的功率输出,其平均功率达2.5 GW,平均束波转换效率为8.3%。  相似文献   

8.
利用负载电流产生微波的新型MILO   总被引:12,自引:11,他引:1       下载免费PDF全文
 为了进一步提高MILO产生微波的功率和效率,提出了其负载电流能量全部利用来产生微波的新思想。设计并运用二维全电磁PIC方法模拟了基于此思想的新型MILO,它是传统MILO与VCO的有机结合(简称MVO)。模拟结果表明MVO中MILO部分与作为MILO负载的VCO部分各自工作正常,VCO部分产生微波的主频受MILO部分产生微波的牵引。在输入25GW电功率(工作电压约500kV)下,与相应传统MILO相比,MVO的微波平均输出功率提高了500MW,效率从6%提高到了8%。  相似文献   

9.
利用数值方法计算了磁绝缘线振荡器(MILO)主慢波结构谐振腔和扼流腔的谐振频率和场分布,得出慢波结构谐振腔谐振频率的一些变化规律:随着叶片内半径的增大、叶片外半径的减小、叶片周期的减小以及叶片间距的减小,谐振腔TM01模式截止频率升高;而阴极半径的变化对截止频率几乎无影响。当主慢波结构腔内半径为4.6cm,扼流腔内半径为4.2cm,阴极半径为3cm时,MILO工作在3.“4.4GHz频率范围,扼流片可以阻止微波功率向脉冲功率源泄漏,这有利于提高器件微波输出的效率;  相似文献   

10.
新型高功率虚阴极径向反射速调管振荡器   总被引:2,自引:2,他引:0       下载免费PDF全文
 提出了一种新型的高功率虚阴极径向反射速调管振荡器,它结合了虚阴极振荡器容易起振和速调管微波产生效率较高的特点。利用虚阴极反射电子束对调制腔的正反馈,可以减小起振电流和起振时间,而且提高了微波产生效率。它是一种结构简单、紧凑的器件。用2.5维PIC程序对这种器件进行了数值模拟研究。得到的数值模拟结果表明,输入电压620 kV,电流25 kA,输出微波周期平均功率为2.5 GW。虚阴极振荡频率被锁定,频率为1.25 GHz。  相似文献   

11.
 设计了一种阶梯阴极型S波段磁绝缘线振荡器,通过对其色散关系的研究,选择了合理的结构参数。通过对开放腔模型的分析,得到了磁绝缘线振荡器的谐振频率和有载品质因数。粒子模拟表明,在外加电压523 kV、束流49.7 kA时,微波输出功率4.35 GW,频率2.10 GHz,功率转换效率16.7%。  相似文献   

12.
紧凑型L波段磁绝缘线振荡器的粒子模拟   总被引:5,自引:3,他引:2       下载免费PDF全文
 采取减小阴极杆半径和长度、阴阳极间隙、叶片的长度和厚度及慢波结构周期的办法构造了一种紧凑型磁绝缘线性振荡器(MILO),并用2.5维全电磁PIC方法对这一器件进行了粒子模拟研究。该装置主频为1.9GHz,饱和后平均输出功率达5.4GW,束波转换效率达12%。紧凑型MILO结构能避免电击穿,电子束发射的对称性较易控制。  相似文献   

13.
一种改进型C波段磁绝缘线振荡器的数值模拟研究   总被引:3,自引:2,他引:1       下载免费PDF全文
 提出了一种改进型C波段磁绝缘线振荡器,并对其进行了优化设计。首先根据磁绝缘原理对慢波结构进行了理论分析,并选择了磁绝缘线振荡器阴极半径和主慢波结构的基本参数,然后用2.5维全电磁PIC方法研究了输出功率与其它参数之间的关系。模拟表明,优化结构可以在输入约21GW电功率(工作电压约500kV)的条件下,得到频率3.91GHz、平均功率2.71GW的微波输出,其饱和时间为10ns,平均效率为12.9%。  相似文献   

14.
Ku波段磁绝缘线振荡器的数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
 根据现有的慢波结构色散特性的理论分析,提出了一种Ku波段的磁绝缘线振荡器(MILO)。与常见MILO的慢波结构不同,该MILO的慢波结构通过增大扼流腔的外半径来实现扼流作用,以防止阴阳极击穿。利用3维电磁场模拟软件对Ku波段MILO的开放腔模型进行了分析,得到其谐振频率为13.536 GHz以及有载品质因数为43。同时利用2.5维全电磁粒子模拟软件对其进行数值模拟,进一步优化了MILO结构,研究了输出微波的功率效率与输入电压的关系,得到的最优工作电压为600 kV。在外加电压600 kV、束流47.4 kA的情况下,模拟得到的平均功率为3.69 GW,中心频率为13.62 GHz,功率转换效率为12.6%。  相似文献   

15.
 研制了一台能同时产生3电子束的高功率强流加速器,该加速器主要由初级储能部分、线绕式脉冲变压器、水介质形成线和三阴极二极管组成,3根阴极分别伸入3个独立的漂移管,对3个电子束之间相互作用的电磁力起屏蔽作用。当该加速器二极管接单个阴极时,产生的电功率超过50 GW;当该加速器二极管同时接3个阴极时,产生3个电子束的电功率分别超过10 GW;当该加速器被用于驱动3个高功率微波管时,能产生L波段1.0 GW,S波段1.0 GW和C波段300 MW的微波输出。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号