首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultra-short pulsed laser ablation and micromachining of n-type, 4H-SiC wafer was performed using a 1552 nm wavelength, 2 ps pulse, 5 μJ pulse energy erbium-doped fiber laser with an objective of rapid etching of diaphragms for pressure sensors. Ablation rate, studied as a function of energy fluence, reached a maximum of 20 nm per pulse at 10 mJ/cm2, which is much higher than that achievable by the femtosecond laser for the equivalent energy fluence. Ablation threshold was determined as 2 mJ/cm2. Scanning electron microscope images supported the Coulomb explosion (CE) mechanism by revealing very fine particulates, smooth surfaces and absence of thermal effects including melt layer formation. It is hypothesized that defect-activated absorption and multiphoton absorption mechanisms gave rise to a charge density in the surface layers required for CE and enabled material expulsion in the form of nanoparticles. Trenches and holes micromachined by the picosecond laser exhibited clean and smooth edges and non-thermal ablation mode for pulse repetition rates less than 250 kHz. However carbonaceous material and recast layer were noted in the machined region when the pulse repetition rate was increased 500 kHz that could be attributed to the interaction between air plasma and micro/nanoparticles. A comparison with femtosecond pulsed lasers shows the promise that picosecond lasers are more efficient and cost effective tools for creating sensor diaphragms and via holes in 4H-SiC.  相似文献   

2.
Interactions of a transversely excited atmospheric (TEA) CO2 laser and an excimer XeCl laser, pulse durations ∼2 μs (initial spike FWHM ∼100 ns) and ∼20 ns (FWHM), respectively, with polycrystalline titanium nitride (TiN) coating deposited on high quality steel AISI 316, were studied. Titanium nitride was surface modified by the laser beams, with an energy density of 20.0 J/cm2 (TEA CO2 laser) and 2.4 J/cm2 (XeCl laser), respectively. The energy absorbed from the CO2 laser beam is partially converted to thermal energy, which generates a series of effects such as melting, vaporization of the molten material, shock waves, etc. The energy from the excimer XeCl laser primarily leads to fast and intense target evaporation. The calculated maximum temperatures on the target surface were 3770 and 6300 K for the TEA CO2 and XeCl lasers, respectively. It is assumed that the TEA CO2 laser affects the target deeper, for a longer time than the XeCl laser. The effects of the XeCl laser are confined to a localized area, near target surface, within a short time period.Morphological modifications of the titanium nitride surface can be summarized as follows: (i) both lasers produced ablation of the TiN coating in the central zone of the irradiated area and creation of grainy structure with near homogeneous distribution; (ii) a hydrodynamic feature, like resolidified droplets of the material, appeared in the surrounding peripheral zone; (iii) the process of irradiation, in both cases, was accompanied by appearance of plasma in front of the target.Target color modifications upon laser irradiation indicate possible chemical changes, possibly oxidation.  相似文献   

3.
Optical multimode fibers are applied in materials processing (e.g. automotive industry), defense, aviation technology, medicine and biotechnology. One challenging task concerning the production of multimode fibers is the enhancement of laser-induced damage thresholds. A higher damage threshold enables a higher transmitted average power at a given fiber diameter or the same power inside a thinner fiber to obtain smaller focus spots.In principle, different material parameters affect the damage threshold. Besides the quality of the preform bulk material itself, the drawing process during the production of the fiber and the preparation of the fiber end surfaces influence the resistance. Therefore, the change of the laser-induced damage threshold of preform materials was investigated in dependence on a varying thermal treatment and preparation procedure.Single and multi-pulse laser-induced damage thresholds of preforms (F300, Heraeus) were measured using a Q-switched Nd:YAG laser at 1064 nm wavelength emitting pulses with a duration of 15 ns, a pulse energy of 12 mJ and a repetition rate of 10 Hz. The temporal and spatial shape of the laser pulses were controlled accurately.Laser-induced damage thresholds in a range from 150 J cm−2 to 350 J cm−2 were determined depending on the number of pulses applied to the same spot, the thermal history and the polishing quality of the samples, respectively.  相似文献   

4.
Spectroscopic measurements in the UV/VIS region show reduced transmission through laser-induced backside wet etching (LIBWE) of fused silica. Absorption coefficients of up to 105 cm−1 were calculated from the transmission measurements for a solid surface layer of about 50 nm. The temperatures near the interface caused by laser pulse absorption, which were analytically calculated using a new thermal model considering interface and liquid volume absorption, can reach 104 K at typical laser fluences. The high absorption coefficients and the extreme temperatures give evidence for an ablation-like process that is involved in the LIBWE process causing the etching of the modified near-surface region. The confinement of the ablation/etching process to the modified near-surface material region can account for the low etch rates observed in comparison to front-side ablation.  相似文献   

5.
Mechanical properties of engineering material can be improved by introducing compressive residual stress on the material surface and refinement of their microstructure. Variety of mechanical process such as shot peening, water jet peening, ultrasonic peening, laser shot peening were developed in the last decades on this contrast. Among these, lasers shot peening emerged as a novel industrial treatment to improve the crack resistance of turbine blades and the stress corrosion cracking (SCC) of austenic stainless steel in power plants. In this study we successfully performed laser shot peening on precipitation hardened aluminum alloy 6061-T6 with low energy (300 mJ, 1064 nm) Nd:YAG laser using different pulse densities of 22 pulses/mm2 and 32 pulses/mm2. Residual stress evaluation based on X-ray diffraction sin2 ψ method indicates a maximum of 190% percentage increase on surface compressive stress. Depth profile of micro-hardness shows the impact of laser generated shock wave up to 1.2 mm from the surface. Apart from that, the crystalline size and micro-strain on the laser shot peened surfaces have been investigated and compared with the unpeened surface using X-ray diffraction in conjunction with line broadening analysis through the Williamson-Hall plot.  相似文献   

6.
We demonstrate passive Q-switching of short-length double-clad Tm3+-doped silica fiber lasers near 2 μm pumped by a laser diode array (LDA) at 790 nm. Polycrystalline Cr2+:ZnSe microchips with thickness from 0.3 to 1 mm are adopted as the Q-switching elements. Pulse duration of 120 ns, pulse energy over 14 μJ and repetition rate of 53 kHz are obtained from a 5-cm long fiber laser. As high as 530 kHz repetition rate is achieved from a 50-cm long fiber laser at ∼10-W pump power. The performance of the Q-switched fiber lasers as a function of fiber length is also analyzed.  相似文献   

7.
Phase diffractive optical elements are at present proposed for use with infrared high power lasers, for material surface treatment applications. However, the heating of the component exposed to several kilowatts per square centimetre can be a problem for practical implementation. The deformations due to thermal expansion of a gold binary diffraction grating under high power CO2 laser exposure at 10.6 μm are estimated by a Finite Element Method. They are compared to the geometrical tolerances obtained by a rigorous electromagnetic Fourier modal method which is used to calculate the optical performances. Several exposure parameters (duration, average laser power) and grating parameters (period, line space ratio) are investigated. The laser exposure should be limited to a few milliseconds with a power density on the grating of 104 W/cm2, so that the amplitude of the deformations does not exceed the 75 nm tolerance on the grating depth. One is thus assured that the diffraction efficiency in the first order remains superior to 38.5%.  相似文献   

8.
A novel shooting method with excellent simple control strategy is developed for solving the failure to convergence of the traditional shooting methods themselves in fiber lasers model. Compared with the published literature, the novel shooting method provides a clear physical understanding method for getting the threshold pump power and the exact results with given random functions in Yb3+-doped fiber lasers and Er3+-doped fiber lasers. Then, the results in Er3+-doped fiber lasers and Yb3+-doped fiber lasers demonstrate that the solutions using the novel shooting method has high accuracy of 10−8 W with several iteration steps, which have extended the applicable range of the end-pumped power even lower than 1 mW pump power. Furthermore, compared with 1480 nm pump for the threshold and slope efficiencies of the Er3+-doped fiber lasers, 978 nm fiber lasers can extend wider scope of application and be pump source in the coming future. Finally, the lower threshold and higher slope efficiency at 975 nm than those of 910 nm pump in Yb3+-doped fiber lasers, 975 nm pump laser provides for broad band excellent cladding pump source.  相似文献   

9.
Periodic surface nanostructures are observed on Ti3+:Al2O3 single crystals that have been irradiated by a single focused beam from a femtosecond pulsed laser (wavelength: 800 nm; pulse duration: 130 and 152 fs). Atomic force microscopy images of single-ablated zones and modified structures created by fixing and translating samples through the focal region of a linearly polarized laser beam reveal self-organized periodic surface nanostructures (ripples) with a subwavelength spacing, which are oriented perpendicular to the electric-field vector of the laser beam. The period of the subwavelength ripples obtained by linearly polarized laser irradiation varies from ∼λ/5 to 2λ/5 (λ: incident laser wavelength) depending on the laser pulse energy. This phenomenon can be explained by assuming that the incident light field interferes with the electric field of electron plasma waves propagating inside the material; this interference periodically modulates the electron plasma density and modifies the surface ablation. In addition, for the first time, we observe screw-shaped nanostructures in the focal spot of circularly polarized beam irradiation. The morphology of these nanostructures appears to reflect the circular polarization of the laser light.  相似文献   

10.
An analytic model is developed for evaluating the extractable energy from high energy pulsed erbium-ytterbium co-doped fiber amplifiers and lasers. The energy extraction capabilities under the limitation of spurious lasing, due to amplified spontaneous emission (ASE), are mapped for various numerical apertures, single and multi transverse mode evolution and operating wavelengths. The model provides an assessment for the maximum pulse energy that can be extracted from a given erbium-ytterbium co-doped fiber. In addition, the model can be used to determine the repetition rate and optimal length, under which the laser source will be optimally operated in order to achieve a required extracted energy, without spurious lasing. The results show a clear advantage in using 915 nm wavelength pump source over 975 nm, at high average power operation, due to augmented 1 μm ASE at 975 nm pump wavelength, as a result of the Yb3+ population inversion.  相似文献   

11.
High power and highly efficient operation of a Tm3+, Ho3+-doped silica fibre laser that is pumped with diode lasers operating at 1150 nm is demonstrated. Internal slope efficiencies approaching the Stokes limit were produced and the maximum output power was 2.9 W. High power diode lasers operating at 1150 nm are valuable pump sources for a range of fibre lasers offering output in the shortwave infrared spectrum.  相似文献   

12.
This paper describes optical amplification properties in a polymeric waveguide doped with Tb-Al nanoclusters. The Tb-Al nanocluster is a promising fluorescent material for polymeric waveguides, which can be uniformly dispersed in polymer matrices while restraining the concentration quenching of Tb3+. Under the continuous optical pumping by 488 nm laser light, optical amplification for the green emission of Tb3+ was achieved. The optical gain coefficients were estimated to be as high as 0.25 and 0.56 mm−1 at the Tb-Al nanocluster concentrations of 4.5 and 5.0 wt%, respectively. Taking into account our previous works for the polymeric waveguide doped with Eu-Al nanocluster, the rare-earth-metal nanocluster is believed to be a promising candidate for various photonic applications such as multicolor polymer lasers and waveguide-type optical amplifiers.  相似文献   

13.
The round-trip attenuating process of lasers used for guiding in artificial water mists is studied with the Monte-Carlo method. A new way for confirming the scattering directions of photons is established based on calculating Mie cumulative probability distribution function of the polydisperse mist and user defined function fitting by Matlab. Two Monte-Carlo methods for photons tracking are mentioned and their efficiencies are discussed and balanced in this paper. A conclusion is come to that the Wight method is evidently more efficiency than the Event method, and the former is adopted in this paper. The radiuses of frequently-used water mists are usually in the range of 101–102 μm which are found to be suited to attenuate the 10.6 μm laser and can be used for laser stealth. But the effect is worse for 1.06 μm laser.  相似文献   

14.
Surface texturing of the metals, including steels, gained a new dimension with the appearance of femtosecond lasers. These laser systems enable highly precise modifications, which are very important for numerous applications of metals. The effects of a Ti:sapphire femtosecond laser with the pulse duration of 160 fs, operating at 775 nm wavelength and in two operational regimes - single pulse (SP) and scanning regime, on a high quality AISI 1045 carbon steel were studied. The estimated surface damage threshold was 0.22 J/cm2 (SP). Surface modification was studied for the laser fluences of 0.66, 1.48 and 2.37 J/cm2. The fluence of 0.66 J/cm2, in both working regimes, induced texturing of the material, i.e. formation of periodic surface structures (PSS). Their periodicity was in accordance with the used laser wavelength. Finally, changes in the surface oxygen content caused by ultrashort laser pulses were recorded.  相似文献   

15.
The results of patterning of the indium-tin oxide (ITO) film on the glass substrate with high repetition rate picosecond lasers at various wavelengths are presented. Laser radiation initiated the ablation of the material, forming grooves in ITO. Profile of the grooves was analyzed with a phase contrast optical microscope, a stylus type profiler, scanning electron microscope (SEM) and atomic force microscope (AFM). Clean removal of the ITO film was achieved with the 266 nm radiation when laser fluence was above the threshold at 0.20 J/cm2, while for the 355 nm radiation, the threshold was higher, above 0.46 J/cm2. The glass substrate was damaged in the area where the fluence was higher than 1.55 J/cm2. The 532 nm radiation allowed getting well defined grooves, but a lot of residues in the form of dust were generated on the surface. UV radiation with the 266 nm wavelength provided the widest working window for ITO ablation without damage of the substrate. Use of UV laser radiation with fluences close to the ablation threshold made it possible to minimize surface contamination and the recast ridge formation during the process.  相似文献   

16.
In reference to real devices fabricated in laboratories, the optical properties of AlGaInAs, InGaNAs, and InGaAsP semiconductor material systems for 1.3-μm semiconductor lasers are systematically studied. Simulation results show that both the AlGaInAs/InP and InGaNAs/GaAs material systems have better gain performance and smaller transparency carrier density than the InGaAsP/InP material system. For the AlGaInAs/InP material system, the characteristic temperature is improved by using compensating tensile strain in barrier. Specifically, for a 250-μm-long short-cavity AlGaInAs/InP laser, when the barrier is with a compensating tensile strain of 0.39%, the characteristic temperatures in 290-330 K and 330-350 K can be enhanced to 121.7 K and 58.9 K, respectively. For the InGaNAs/GaAs material system, simulation results suggest that the laser performance can be significantly improved when the laser is with strain-compensated GaNAs barriers.  相似文献   

17.
Microstructures are usually fabricated on the surface of optical sheets to improve the optical characteristics. In this study, a new fabrication process with UV (ultraviolet) laser direct writing method is developed to embed microstructures inside the glass. Then the optical properties of glass such as reflection and refraction indexes can be modified. Single- and multi-layer microstructures are designed and embedded inside glass substrate to modify the optical characteristics. Both luminance and uniformity can be controlled with the embedded microstructures. Thus, the glass with inside pattern can be used as a light guide plate to increase optical performance. First, an optical commercial software, FRED, is applied to design the microstructure configuration. Then, UV laser direct writing with output power 2.5-2.6 W, repetition rate 30 kHz, wave length: 355 nm, and pulse duration 15 ns is used to fabricate the microstructures inside the glass. The effect of dot pattern in the glass such as the dot pitch, the layer gap, and the number of layer on the optical performance is discussed. Machining capacity of UV laser ranges from micron to submicrometer; hence with this ultrafast laser pulse, objectives of various dimensions such as dot, line width, and layers can be easily embedded in the glass by one simple process. In addition, the embedded microstructures can be made with less contamination. Finally, the optical performance of the glasses with various configurations is measured using a Spectra Colorometer (Photo Research PR650) and compared with the simulated results.  相似文献   

18.
Scanning Auger microscopy and micro-Raman spectroscopy are combined to characterize a Co-Se thin film sample, containing 84 at.% Se, which had been modified in localized areas following excitation with an intense focused Ar+ laser (514.5 nm). The information obtained helps to establish that a previous assignment for a Co-Se sample of Raman features between 168 and 175 cm−1 actually refers to an oxygenated Co-Se species, and that Co-Se interactions in a Se-rich environment give rise to Raman structure between 181 and 184 cm−1. Comparisons are made for the use of Ar+ and HeNe laser sources for Raman measurements in this context; the latter in general gives both better resolution and better signal-to-noise characteristics.  相似文献   

19.
Diamond-like carbon (DLC) films were fabricated by pulsed laser ablation of a liquid target. During deposition process the growing films were exited by a laser beam irradiation. The films were deposited onto the fused silica using 248 nm KrF eximer laser at room temperature and 10−3 mbar pressure. Film irradiation was carried out by the same KrF laser operating periodically between the deposition and excitation regimes. Deposited DLC films were characterized by Raman scattering spectroscopy. The results obtained suggested that laser irradiation intensity has noticeable influence on the structure and hybridization of carbon atoms deposited. For materials deposited at moderate irradiation intensities a very high and sharp peak appeared at 1332 cm−1, characteristic of diamond crystals. At higher irradiation intensities the graphitization of the amorphous films was observed. Thus, at optimal energy density the individual sp3-hybridized carbon phase was deposited inside the amorphous carbon structure. Surface morphology for DLC has been analyzed using atomic force microscopy (AFM) indicating that more regular diamond cluster formation at optimal additional laser illumination conditions (∼20 mJ per impulse) is possible.  相似文献   

20.
In this study, a new process of glass micro-prism structures is investigated by an ultra-fast laser irradiation with chemical etching process. The ultra-fast laser is employed by an all-in-one femtosecond laser (FS-laser) system with the amplifier as an excitation source for patterning the structures. Here, the center wavelength of laser is frequency-doubled to 517 nm. Besides, the repetition rate and pulse width of laser are 100 kHz and 350 fs, respectively. First, the embedded gratings of glass with different pitches can be fabricated using a FS-laser process. Afterwards, the glass samples are placed in the hydrofluoric acid (HF) solution for 15 min to develop structures. Finally, the results of this study demonstrated that the V-cut micro-prisms are successfully formed by controlling etching concentration between intrinsic glass material and modified areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号